123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567 |
- // THIS FILE IS AUTOMATICALLY GENERATED. DO NOT EDIT.
- // Package machinelearning provides a client for Amazon Machine Learning.
- package machinelearning
- import (
- "fmt"
- "time"
- "github.com/aws/aws-sdk-go/aws/awsutil"
- "github.com/aws/aws-sdk-go/aws/request"
- )
- const opAddTags = "AddTags"
- // AddTagsRequest generates a "aws/request.Request" representing the
- // client's request for the AddTags operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See AddTags for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the AddTags method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the AddTagsRequest method.
- // req, resp := client.AddTagsRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) AddTagsRequest(input *AddTagsInput) (req *request.Request, output *AddTagsOutput) {
- op := &request.Operation{
- Name: opAddTags,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &AddTagsInput{}
- }
- req = c.newRequest(op, input, output)
- output = &AddTagsOutput{}
- req.Data = output
- return
- }
- // AddTags API operation for Amazon Machine Learning.
- //
- // Adds one or more tags to an object, up to a limit of 10. Each tag consists
- // of a key and an optional value. If you add a tag using a key that is already
- // associated with the ML object, AddTags updates the tag's value.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation AddTags for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * InvalidTagException
- //
- // * TagLimitExceededException
- //
- // * ResourceNotFoundException
- // A specified resource cannot be located.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- func (c *MachineLearning) AddTags(input *AddTagsInput) (*AddTagsOutput, error) {
- req, out := c.AddTagsRequest(input)
- err := req.Send()
- return out, err
- }
- const opCreateBatchPrediction = "CreateBatchPrediction"
- // CreateBatchPredictionRequest generates a "aws/request.Request" representing the
- // client's request for the CreateBatchPrediction operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See CreateBatchPrediction for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the CreateBatchPrediction method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the CreateBatchPredictionRequest method.
- // req, resp := client.CreateBatchPredictionRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) CreateBatchPredictionRequest(input *CreateBatchPredictionInput) (req *request.Request, output *CreateBatchPredictionOutput) {
- op := &request.Operation{
- Name: opCreateBatchPrediction,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &CreateBatchPredictionInput{}
- }
- req = c.newRequest(op, input, output)
- output = &CreateBatchPredictionOutput{}
- req.Data = output
- return
- }
- // CreateBatchPrediction API operation for Amazon Machine Learning.
- //
- // Generates predictions for a group of observations. The observations to process
- // exist in one or more data files referenced by a DataSource. This operation
- // creates a new BatchPrediction, and uses an MLModel and the data files referenced
- // by the DataSource as information sources.
- //
- // CreateBatchPrediction is an asynchronous operation. In response to CreateBatchPrediction,
- // Amazon Machine Learning (Amazon ML) immediately returns and sets the BatchPrediction
- // status to PENDING. After the BatchPrediction completes, Amazon ML sets the
- // status to COMPLETED.
- //
- // You can poll for status updates by using the GetBatchPrediction operation
- // and checking the Status parameter of the result. After the COMPLETED status
- // appears, the results are available in the location specified by the OutputUri
- // parameter.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation CreateBatchPrediction for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- // * IdempotentParameterMismatchException
- // A second request to use or change an object was not allowed. This can result
- // from retrying a request using a parameter that was not present in the original
- // request.
- //
- func (c *MachineLearning) CreateBatchPrediction(input *CreateBatchPredictionInput) (*CreateBatchPredictionOutput, error) {
- req, out := c.CreateBatchPredictionRequest(input)
- err := req.Send()
- return out, err
- }
- const opCreateDataSourceFromRDS = "CreateDataSourceFromRDS"
- // CreateDataSourceFromRDSRequest generates a "aws/request.Request" representing the
- // client's request for the CreateDataSourceFromRDS operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See CreateDataSourceFromRDS for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the CreateDataSourceFromRDS method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the CreateDataSourceFromRDSRequest method.
- // req, resp := client.CreateDataSourceFromRDSRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) CreateDataSourceFromRDSRequest(input *CreateDataSourceFromRDSInput) (req *request.Request, output *CreateDataSourceFromRDSOutput) {
- op := &request.Operation{
- Name: opCreateDataSourceFromRDS,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &CreateDataSourceFromRDSInput{}
- }
- req = c.newRequest(op, input, output)
- output = &CreateDataSourceFromRDSOutput{}
- req.Data = output
- return
- }
- // CreateDataSourceFromRDS API operation for Amazon Machine Learning.
- //
- // Creates a DataSource object from an Amazon Relational Database Service (http://aws.amazon.com/rds/)
- // (Amazon RDS). A DataSource references data that can be used to perform CreateMLModel,
- // CreateEvaluation, or CreateBatchPrediction operations.
- //
- // CreateDataSourceFromRDS is an asynchronous operation. In response to CreateDataSourceFromRDS,
- // Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource
- // status to PENDING. After the DataSource is created and ready for use, Amazon
- // ML sets the Status parameter to COMPLETED. DataSource in the COMPLETED or
- // PENDING state can be used only to perform >CreateMLModel>, CreateEvaluation,
- // or CreateBatchPrediction operations.
- //
- // If Amazon ML cannot accept the input source, it sets the Status parameter
- // to FAILED and includes an error message in the Message attribute of the GetDataSource
- // operation response.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation CreateDataSourceFromRDS for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- // * IdempotentParameterMismatchException
- // A second request to use or change an object was not allowed. This can result
- // from retrying a request using a parameter that was not present in the original
- // request.
- //
- func (c *MachineLearning) CreateDataSourceFromRDS(input *CreateDataSourceFromRDSInput) (*CreateDataSourceFromRDSOutput, error) {
- req, out := c.CreateDataSourceFromRDSRequest(input)
- err := req.Send()
- return out, err
- }
- const opCreateDataSourceFromRedshift = "CreateDataSourceFromRedshift"
- // CreateDataSourceFromRedshiftRequest generates a "aws/request.Request" representing the
- // client's request for the CreateDataSourceFromRedshift operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See CreateDataSourceFromRedshift for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the CreateDataSourceFromRedshift method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the CreateDataSourceFromRedshiftRequest method.
- // req, resp := client.CreateDataSourceFromRedshiftRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) CreateDataSourceFromRedshiftRequest(input *CreateDataSourceFromRedshiftInput) (req *request.Request, output *CreateDataSourceFromRedshiftOutput) {
- op := &request.Operation{
- Name: opCreateDataSourceFromRedshift,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &CreateDataSourceFromRedshiftInput{}
- }
- req = c.newRequest(op, input, output)
- output = &CreateDataSourceFromRedshiftOutput{}
- req.Data = output
- return
- }
- // CreateDataSourceFromRedshift API operation for Amazon Machine Learning.
- //
- // Creates a DataSource from a database hosted on an Amazon Redshift cluster.
- // A DataSource references data that can be used to perform either CreateMLModel,
- // CreateEvaluation, or CreateBatchPrediction operations.
- //
- // CreateDataSourceFromRedshift is an asynchronous operation. In response to
- // CreateDataSourceFromRedshift, Amazon Machine Learning (Amazon ML) immediately
- // returns and sets the DataSource status to PENDING. After the DataSource is
- // created and ready for use, Amazon ML sets the Status parameter to COMPLETED.
- // DataSource in COMPLETED or PENDING states can be used to perform only CreateMLModel,
- // CreateEvaluation, or CreateBatchPrediction operations.
- //
- // If Amazon ML can't accept the input source, it sets the Status parameter
- // to FAILED and includes an error message in the Message attribute of the GetDataSource
- // operation response.
- //
- // The observations should be contained in the database hosted on an Amazon
- // Redshift cluster and should be specified by a SelectSqlQuery query. Amazon
- // ML executes an Unload command in Amazon Redshift to transfer the result set
- // of the SelectSqlQuery query to S3StagingLocation.
- //
- // After the DataSource has been created, it's ready for use in evaluations
- // and batch predictions. If you plan to use the DataSource to train an MLModel,
- // the DataSource also requires a recipe. A recipe describes how each input
- // variable will be used in training an MLModel. Will the variable be included
- // or excluded from training? Will the variable be manipulated; for example,
- // will it be combined with another variable or will it be split apart into
- // word combinations? The recipe provides answers to these questions.
- //
- // You can't change an existing datasource, but you can copy and modify the
- // settings from an existing Amazon Redshift datasource to create a new datasource.
- // To do so, call GetDataSource for an existing datasource and copy the values
- // to a CreateDataSource call. Change the settings that you want to change and
- // make sure that all required fields have the appropriate values.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation CreateDataSourceFromRedshift for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- // * IdempotentParameterMismatchException
- // A second request to use or change an object was not allowed. This can result
- // from retrying a request using a parameter that was not present in the original
- // request.
- //
- func (c *MachineLearning) CreateDataSourceFromRedshift(input *CreateDataSourceFromRedshiftInput) (*CreateDataSourceFromRedshiftOutput, error) {
- req, out := c.CreateDataSourceFromRedshiftRequest(input)
- err := req.Send()
- return out, err
- }
- const opCreateDataSourceFromS3 = "CreateDataSourceFromS3"
- // CreateDataSourceFromS3Request generates a "aws/request.Request" representing the
- // client's request for the CreateDataSourceFromS3 operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See CreateDataSourceFromS3 for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the CreateDataSourceFromS3 method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the CreateDataSourceFromS3Request method.
- // req, resp := client.CreateDataSourceFromS3Request(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) CreateDataSourceFromS3Request(input *CreateDataSourceFromS3Input) (req *request.Request, output *CreateDataSourceFromS3Output) {
- op := &request.Operation{
- Name: opCreateDataSourceFromS3,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &CreateDataSourceFromS3Input{}
- }
- req = c.newRequest(op, input, output)
- output = &CreateDataSourceFromS3Output{}
- req.Data = output
- return
- }
- // CreateDataSourceFromS3 API operation for Amazon Machine Learning.
- //
- // Creates a DataSource object. A DataSource references data that can be used
- // to perform CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations.
- //
- // CreateDataSourceFromS3 is an asynchronous operation. In response to CreateDataSourceFromS3,
- // Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource
- // status to PENDING. After the DataSource has been created and is ready for
- // use, Amazon ML sets the Status parameter to COMPLETED. DataSource in the
- // COMPLETED or PENDING state can be used to perform only CreateMLModel, CreateEvaluation
- // or CreateBatchPrediction operations.
- //
- // If Amazon ML can't accept the input source, it sets the Status parameter
- // to FAILED and includes an error message in the Message attribute of the GetDataSource
- // operation response.
- //
- // The observation data used in a DataSource should be ready to use; that is,
- // it should have a consistent structure, and missing data values should be
- // kept to a minimum. The observation data must reside in one or more .csv files
- // in an Amazon Simple Storage Service (Amazon S3) location, along with a schema
- // that describes the data items by name and type. The same schema must be used
- // for all of the data files referenced by the DataSource.
- //
- // After the DataSource has been created, it's ready to use in evaluations and
- // batch predictions. If you plan to use the DataSource to train an MLModel,
- // the DataSource also needs a recipe. A recipe describes how each input variable
- // will be used in training an MLModel. Will the variable be included or excluded
- // from training? Will the variable be manipulated; for example, will it be
- // combined with another variable or will it be split apart into word combinations?
- // The recipe provides answers to these questions.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation CreateDataSourceFromS3 for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- // * IdempotentParameterMismatchException
- // A second request to use or change an object was not allowed. This can result
- // from retrying a request using a parameter that was not present in the original
- // request.
- //
- func (c *MachineLearning) CreateDataSourceFromS3(input *CreateDataSourceFromS3Input) (*CreateDataSourceFromS3Output, error) {
- req, out := c.CreateDataSourceFromS3Request(input)
- err := req.Send()
- return out, err
- }
- const opCreateEvaluation = "CreateEvaluation"
- // CreateEvaluationRequest generates a "aws/request.Request" representing the
- // client's request for the CreateEvaluation operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See CreateEvaluation for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the CreateEvaluation method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the CreateEvaluationRequest method.
- // req, resp := client.CreateEvaluationRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) CreateEvaluationRequest(input *CreateEvaluationInput) (req *request.Request, output *CreateEvaluationOutput) {
- op := &request.Operation{
- Name: opCreateEvaluation,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &CreateEvaluationInput{}
- }
- req = c.newRequest(op, input, output)
- output = &CreateEvaluationOutput{}
- req.Data = output
- return
- }
- // CreateEvaluation API operation for Amazon Machine Learning.
- //
- // Creates a new Evaluation of an MLModel. An MLModel is evaluated on a set
- // of observations associated to a DataSource. Like a DataSource for an MLModel,
- // the DataSource for an Evaluation contains values for the Target Variable.
- // The Evaluation compares the predicted result for each observation to the
- // actual outcome and provides a summary so that you know how effective the
- // MLModel functions on the test data. Evaluation generates a relevant performance
- // metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on
- // the corresponding MLModelType: BINARY, REGRESSION or MULTICLASS.
- //
- // CreateEvaluation is an asynchronous operation. In response to CreateEvaluation,
- // Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation
- // status to PENDING. After the Evaluation is created and ready for use, Amazon
- // ML sets the status to COMPLETED.
- //
- // You can use the GetEvaluation operation to check progress of the evaluation
- // during the creation operation.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation CreateEvaluation for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- // * IdempotentParameterMismatchException
- // A second request to use or change an object was not allowed. This can result
- // from retrying a request using a parameter that was not present in the original
- // request.
- //
- func (c *MachineLearning) CreateEvaluation(input *CreateEvaluationInput) (*CreateEvaluationOutput, error) {
- req, out := c.CreateEvaluationRequest(input)
- err := req.Send()
- return out, err
- }
- const opCreateMLModel = "CreateMLModel"
- // CreateMLModelRequest generates a "aws/request.Request" representing the
- // client's request for the CreateMLModel operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See CreateMLModel for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the CreateMLModel method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the CreateMLModelRequest method.
- // req, resp := client.CreateMLModelRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) CreateMLModelRequest(input *CreateMLModelInput) (req *request.Request, output *CreateMLModelOutput) {
- op := &request.Operation{
- Name: opCreateMLModel,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &CreateMLModelInput{}
- }
- req = c.newRequest(op, input, output)
- output = &CreateMLModelOutput{}
- req.Data = output
- return
- }
- // CreateMLModel API operation for Amazon Machine Learning.
- //
- // Creates a new MLModel using the DataSource and the recipe as information
- // sources.
- //
- // An MLModel is nearly immutable. Users can update only the MLModelName and
- // the ScoreThreshold in an MLModel without creating a new MLModel.
- //
- // CreateMLModel is an asynchronous operation. In response to CreateMLModel,
- // Amazon Machine Learning (Amazon ML) immediately returns and sets the MLModel
- // status to PENDING. After the MLModel has been created and ready is for use,
- // Amazon ML sets the status to COMPLETED.
- //
- // You can use the GetMLModel operation to check the progress of the MLModel
- // during the creation operation.
- //
- // CreateMLModel requires a DataSource with computed statistics, which can be
- // created by setting ComputeStatistics to true in CreateDataSourceFromRDS,
- // CreateDataSourceFromS3, or CreateDataSourceFromRedshift operations.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation CreateMLModel for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- // * IdempotentParameterMismatchException
- // A second request to use or change an object was not allowed. This can result
- // from retrying a request using a parameter that was not present in the original
- // request.
- //
- func (c *MachineLearning) CreateMLModel(input *CreateMLModelInput) (*CreateMLModelOutput, error) {
- req, out := c.CreateMLModelRequest(input)
- err := req.Send()
- return out, err
- }
- const opCreateRealtimeEndpoint = "CreateRealtimeEndpoint"
- // CreateRealtimeEndpointRequest generates a "aws/request.Request" representing the
- // client's request for the CreateRealtimeEndpoint operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See CreateRealtimeEndpoint for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the CreateRealtimeEndpoint method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the CreateRealtimeEndpointRequest method.
- // req, resp := client.CreateRealtimeEndpointRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) CreateRealtimeEndpointRequest(input *CreateRealtimeEndpointInput) (req *request.Request, output *CreateRealtimeEndpointOutput) {
- op := &request.Operation{
- Name: opCreateRealtimeEndpoint,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &CreateRealtimeEndpointInput{}
- }
- req = c.newRequest(op, input, output)
- output = &CreateRealtimeEndpointOutput{}
- req.Data = output
- return
- }
- // CreateRealtimeEndpoint API operation for Amazon Machine Learning.
- //
- // Creates a real-time endpoint for the MLModel. The endpoint contains the URI
- // of the MLModel; that is, the location to send real-time prediction requests
- // for the specified MLModel.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation CreateRealtimeEndpoint for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * ResourceNotFoundException
- // A specified resource cannot be located.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- func (c *MachineLearning) CreateRealtimeEndpoint(input *CreateRealtimeEndpointInput) (*CreateRealtimeEndpointOutput, error) {
- req, out := c.CreateRealtimeEndpointRequest(input)
- err := req.Send()
- return out, err
- }
- const opDeleteBatchPrediction = "DeleteBatchPrediction"
- // DeleteBatchPredictionRequest generates a "aws/request.Request" representing the
- // client's request for the DeleteBatchPrediction operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See DeleteBatchPrediction for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the DeleteBatchPrediction method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the DeleteBatchPredictionRequest method.
- // req, resp := client.DeleteBatchPredictionRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) DeleteBatchPredictionRequest(input *DeleteBatchPredictionInput) (req *request.Request, output *DeleteBatchPredictionOutput) {
- op := &request.Operation{
- Name: opDeleteBatchPrediction,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &DeleteBatchPredictionInput{}
- }
- req = c.newRequest(op, input, output)
- output = &DeleteBatchPredictionOutput{}
- req.Data = output
- return
- }
- // DeleteBatchPrediction API operation for Amazon Machine Learning.
- //
- // Assigns the DELETED status to a BatchPrediction, rendering it unusable.
- //
- // After using the DeleteBatchPrediction operation, you can use the GetBatchPrediction
- // operation to verify that the status of the BatchPrediction changed to DELETED.
- //
- // Caution: The result of the DeleteBatchPrediction operation is irreversible.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation DeleteBatchPrediction for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * ResourceNotFoundException
- // A specified resource cannot be located.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- func (c *MachineLearning) DeleteBatchPrediction(input *DeleteBatchPredictionInput) (*DeleteBatchPredictionOutput, error) {
- req, out := c.DeleteBatchPredictionRequest(input)
- err := req.Send()
- return out, err
- }
- const opDeleteDataSource = "DeleteDataSource"
- // DeleteDataSourceRequest generates a "aws/request.Request" representing the
- // client's request for the DeleteDataSource operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See DeleteDataSource for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the DeleteDataSource method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the DeleteDataSourceRequest method.
- // req, resp := client.DeleteDataSourceRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) DeleteDataSourceRequest(input *DeleteDataSourceInput) (req *request.Request, output *DeleteDataSourceOutput) {
- op := &request.Operation{
- Name: opDeleteDataSource,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &DeleteDataSourceInput{}
- }
- req = c.newRequest(op, input, output)
- output = &DeleteDataSourceOutput{}
- req.Data = output
- return
- }
- // DeleteDataSource API operation for Amazon Machine Learning.
- //
- // Assigns the DELETED status to a DataSource, rendering it unusable.
- //
- // After using the DeleteDataSource operation, you can use the GetDataSource
- // operation to verify that the status of the DataSource changed to DELETED.
- //
- // Caution: The results of the DeleteDataSource operation are irreversible.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation DeleteDataSource for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * ResourceNotFoundException
- // A specified resource cannot be located.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- func (c *MachineLearning) DeleteDataSource(input *DeleteDataSourceInput) (*DeleteDataSourceOutput, error) {
- req, out := c.DeleteDataSourceRequest(input)
- err := req.Send()
- return out, err
- }
- const opDeleteEvaluation = "DeleteEvaluation"
- // DeleteEvaluationRequest generates a "aws/request.Request" representing the
- // client's request for the DeleteEvaluation operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See DeleteEvaluation for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the DeleteEvaluation method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the DeleteEvaluationRequest method.
- // req, resp := client.DeleteEvaluationRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) DeleteEvaluationRequest(input *DeleteEvaluationInput) (req *request.Request, output *DeleteEvaluationOutput) {
- op := &request.Operation{
- Name: opDeleteEvaluation,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &DeleteEvaluationInput{}
- }
- req = c.newRequest(op, input, output)
- output = &DeleteEvaluationOutput{}
- req.Data = output
- return
- }
- // DeleteEvaluation API operation for Amazon Machine Learning.
- //
- // Assigns the DELETED status to an Evaluation, rendering it unusable.
- //
- // After invoking the DeleteEvaluation operation, you can use the GetEvaluation
- // operation to verify that the status of the Evaluation changed to DELETED.
- //
- // CautionThe results of the DeleteEvaluation operation are irreversible.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation DeleteEvaluation for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * ResourceNotFoundException
- // A specified resource cannot be located.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- func (c *MachineLearning) DeleteEvaluation(input *DeleteEvaluationInput) (*DeleteEvaluationOutput, error) {
- req, out := c.DeleteEvaluationRequest(input)
- err := req.Send()
- return out, err
- }
- const opDeleteMLModel = "DeleteMLModel"
- // DeleteMLModelRequest generates a "aws/request.Request" representing the
- // client's request for the DeleteMLModel operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See DeleteMLModel for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the DeleteMLModel method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the DeleteMLModelRequest method.
- // req, resp := client.DeleteMLModelRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) DeleteMLModelRequest(input *DeleteMLModelInput) (req *request.Request, output *DeleteMLModelOutput) {
- op := &request.Operation{
- Name: opDeleteMLModel,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &DeleteMLModelInput{}
- }
- req = c.newRequest(op, input, output)
- output = &DeleteMLModelOutput{}
- req.Data = output
- return
- }
- // DeleteMLModel API operation for Amazon Machine Learning.
- //
- // Assigns the DELETED status to an MLModel, rendering it unusable.
- //
- // After using the DeleteMLModel operation, you can use the GetMLModel operation
- // to verify that the status of the MLModel changed to DELETED.
- //
- // Caution: The result of the DeleteMLModel operation is irreversible.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation DeleteMLModel for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * ResourceNotFoundException
- // A specified resource cannot be located.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- func (c *MachineLearning) DeleteMLModel(input *DeleteMLModelInput) (*DeleteMLModelOutput, error) {
- req, out := c.DeleteMLModelRequest(input)
- err := req.Send()
- return out, err
- }
- const opDeleteRealtimeEndpoint = "DeleteRealtimeEndpoint"
- // DeleteRealtimeEndpointRequest generates a "aws/request.Request" representing the
- // client's request for the DeleteRealtimeEndpoint operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See DeleteRealtimeEndpoint for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the DeleteRealtimeEndpoint method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the DeleteRealtimeEndpointRequest method.
- // req, resp := client.DeleteRealtimeEndpointRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) DeleteRealtimeEndpointRequest(input *DeleteRealtimeEndpointInput) (req *request.Request, output *DeleteRealtimeEndpointOutput) {
- op := &request.Operation{
- Name: opDeleteRealtimeEndpoint,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &DeleteRealtimeEndpointInput{}
- }
- req = c.newRequest(op, input, output)
- output = &DeleteRealtimeEndpointOutput{}
- req.Data = output
- return
- }
- // DeleteRealtimeEndpoint API operation for Amazon Machine Learning.
- //
- // Deletes a real time endpoint of an MLModel.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation DeleteRealtimeEndpoint for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * ResourceNotFoundException
- // A specified resource cannot be located.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- func (c *MachineLearning) DeleteRealtimeEndpoint(input *DeleteRealtimeEndpointInput) (*DeleteRealtimeEndpointOutput, error) {
- req, out := c.DeleteRealtimeEndpointRequest(input)
- err := req.Send()
- return out, err
- }
- const opDeleteTags = "DeleteTags"
- // DeleteTagsRequest generates a "aws/request.Request" representing the
- // client's request for the DeleteTags operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See DeleteTags for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the DeleteTags method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the DeleteTagsRequest method.
- // req, resp := client.DeleteTagsRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) DeleteTagsRequest(input *DeleteTagsInput) (req *request.Request, output *DeleteTagsOutput) {
- op := &request.Operation{
- Name: opDeleteTags,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &DeleteTagsInput{}
- }
- req = c.newRequest(op, input, output)
- output = &DeleteTagsOutput{}
- req.Data = output
- return
- }
- // DeleteTags API operation for Amazon Machine Learning.
- //
- // Deletes the specified tags associated with an ML object. After this operation
- // is complete, you can't recover deleted tags.
- //
- // If you specify a tag that doesn't exist, Amazon ML ignores it.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation DeleteTags for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * InvalidTagException
- //
- // * ResourceNotFoundException
- // A specified resource cannot be located.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- func (c *MachineLearning) DeleteTags(input *DeleteTagsInput) (*DeleteTagsOutput, error) {
- req, out := c.DeleteTagsRequest(input)
- err := req.Send()
- return out, err
- }
- const opDescribeBatchPredictions = "DescribeBatchPredictions"
- // DescribeBatchPredictionsRequest generates a "aws/request.Request" representing the
- // client's request for the DescribeBatchPredictions operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See DescribeBatchPredictions for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the DescribeBatchPredictions method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the DescribeBatchPredictionsRequest method.
- // req, resp := client.DescribeBatchPredictionsRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) DescribeBatchPredictionsRequest(input *DescribeBatchPredictionsInput) (req *request.Request, output *DescribeBatchPredictionsOutput) {
- op := &request.Operation{
- Name: opDescribeBatchPredictions,
- HTTPMethod: "POST",
- HTTPPath: "/",
- Paginator: &request.Paginator{
- InputTokens: []string{"NextToken"},
- OutputTokens: []string{"NextToken"},
- LimitToken: "Limit",
- TruncationToken: "",
- },
- }
- if input == nil {
- input = &DescribeBatchPredictionsInput{}
- }
- req = c.newRequest(op, input, output)
- output = &DescribeBatchPredictionsOutput{}
- req.Data = output
- return
- }
- // DescribeBatchPredictions API operation for Amazon Machine Learning.
- //
- // Returns a list of BatchPrediction operations that match the search criteria
- // in the request.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation DescribeBatchPredictions for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- func (c *MachineLearning) DescribeBatchPredictions(input *DescribeBatchPredictionsInput) (*DescribeBatchPredictionsOutput, error) {
- req, out := c.DescribeBatchPredictionsRequest(input)
- err := req.Send()
- return out, err
- }
- // DescribeBatchPredictionsPages iterates over the pages of a DescribeBatchPredictions operation,
- // calling the "fn" function with the response data for each page. To stop
- // iterating, return false from the fn function.
- //
- // See DescribeBatchPredictions method for more information on how to use this operation.
- //
- // Note: This operation can generate multiple requests to a service.
- //
- // // Example iterating over at most 3 pages of a DescribeBatchPredictions operation.
- // pageNum := 0
- // err := client.DescribeBatchPredictionsPages(params,
- // func(page *DescribeBatchPredictionsOutput, lastPage bool) bool {
- // pageNum++
- // fmt.Println(page)
- // return pageNum <= 3
- // })
- //
- func (c *MachineLearning) DescribeBatchPredictionsPages(input *DescribeBatchPredictionsInput, fn func(p *DescribeBatchPredictionsOutput, lastPage bool) (shouldContinue bool)) error {
- page, _ := c.DescribeBatchPredictionsRequest(input)
- page.Handlers.Build.PushBack(request.MakeAddToUserAgentFreeFormHandler("Paginator"))
- return page.EachPage(func(p interface{}, lastPage bool) bool {
- return fn(p.(*DescribeBatchPredictionsOutput), lastPage)
- })
- }
- const opDescribeDataSources = "DescribeDataSources"
- // DescribeDataSourcesRequest generates a "aws/request.Request" representing the
- // client's request for the DescribeDataSources operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See DescribeDataSources for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the DescribeDataSources method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the DescribeDataSourcesRequest method.
- // req, resp := client.DescribeDataSourcesRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) DescribeDataSourcesRequest(input *DescribeDataSourcesInput) (req *request.Request, output *DescribeDataSourcesOutput) {
- op := &request.Operation{
- Name: opDescribeDataSources,
- HTTPMethod: "POST",
- HTTPPath: "/",
- Paginator: &request.Paginator{
- InputTokens: []string{"NextToken"},
- OutputTokens: []string{"NextToken"},
- LimitToken: "Limit",
- TruncationToken: "",
- },
- }
- if input == nil {
- input = &DescribeDataSourcesInput{}
- }
- req = c.newRequest(op, input, output)
- output = &DescribeDataSourcesOutput{}
- req.Data = output
- return
- }
- // DescribeDataSources API operation for Amazon Machine Learning.
- //
- // Returns a list of DataSource that match the search criteria in the request.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation DescribeDataSources for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- func (c *MachineLearning) DescribeDataSources(input *DescribeDataSourcesInput) (*DescribeDataSourcesOutput, error) {
- req, out := c.DescribeDataSourcesRequest(input)
- err := req.Send()
- return out, err
- }
- // DescribeDataSourcesPages iterates over the pages of a DescribeDataSources operation,
- // calling the "fn" function with the response data for each page. To stop
- // iterating, return false from the fn function.
- //
- // See DescribeDataSources method for more information on how to use this operation.
- //
- // Note: This operation can generate multiple requests to a service.
- //
- // // Example iterating over at most 3 pages of a DescribeDataSources operation.
- // pageNum := 0
- // err := client.DescribeDataSourcesPages(params,
- // func(page *DescribeDataSourcesOutput, lastPage bool) bool {
- // pageNum++
- // fmt.Println(page)
- // return pageNum <= 3
- // })
- //
- func (c *MachineLearning) DescribeDataSourcesPages(input *DescribeDataSourcesInput, fn func(p *DescribeDataSourcesOutput, lastPage bool) (shouldContinue bool)) error {
- page, _ := c.DescribeDataSourcesRequest(input)
- page.Handlers.Build.PushBack(request.MakeAddToUserAgentFreeFormHandler("Paginator"))
- return page.EachPage(func(p interface{}, lastPage bool) bool {
- return fn(p.(*DescribeDataSourcesOutput), lastPage)
- })
- }
- const opDescribeEvaluations = "DescribeEvaluations"
- // DescribeEvaluationsRequest generates a "aws/request.Request" representing the
- // client's request for the DescribeEvaluations operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See DescribeEvaluations for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the DescribeEvaluations method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the DescribeEvaluationsRequest method.
- // req, resp := client.DescribeEvaluationsRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) DescribeEvaluationsRequest(input *DescribeEvaluationsInput) (req *request.Request, output *DescribeEvaluationsOutput) {
- op := &request.Operation{
- Name: opDescribeEvaluations,
- HTTPMethod: "POST",
- HTTPPath: "/",
- Paginator: &request.Paginator{
- InputTokens: []string{"NextToken"},
- OutputTokens: []string{"NextToken"},
- LimitToken: "Limit",
- TruncationToken: "",
- },
- }
- if input == nil {
- input = &DescribeEvaluationsInput{}
- }
- req = c.newRequest(op, input, output)
- output = &DescribeEvaluationsOutput{}
- req.Data = output
- return
- }
- // DescribeEvaluations API operation for Amazon Machine Learning.
- //
- // Returns a list of DescribeEvaluations that match the search criteria in the
- // request.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation DescribeEvaluations for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- func (c *MachineLearning) DescribeEvaluations(input *DescribeEvaluationsInput) (*DescribeEvaluationsOutput, error) {
- req, out := c.DescribeEvaluationsRequest(input)
- err := req.Send()
- return out, err
- }
- // DescribeEvaluationsPages iterates over the pages of a DescribeEvaluations operation,
- // calling the "fn" function with the response data for each page. To stop
- // iterating, return false from the fn function.
- //
- // See DescribeEvaluations method for more information on how to use this operation.
- //
- // Note: This operation can generate multiple requests to a service.
- //
- // // Example iterating over at most 3 pages of a DescribeEvaluations operation.
- // pageNum := 0
- // err := client.DescribeEvaluationsPages(params,
- // func(page *DescribeEvaluationsOutput, lastPage bool) bool {
- // pageNum++
- // fmt.Println(page)
- // return pageNum <= 3
- // })
- //
- func (c *MachineLearning) DescribeEvaluationsPages(input *DescribeEvaluationsInput, fn func(p *DescribeEvaluationsOutput, lastPage bool) (shouldContinue bool)) error {
- page, _ := c.DescribeEvaluationsRequest(input)
- page.Handlers.Build.PushBack(request.MakeAddToUserAgentFreeFormHandler("Paginator"))
- return page.EachPage(func(p interface{}, lastPage bool) bool {
- return fn(p.(*DescribeEvaluationsOutput), lastPage)
- })
- }
- const opDescribeMLModels = "DescribeMLModels"
- // DescribeMLModelsRequest generates a "aws/request.Request" representing the
- // client's request for the DescribeMLModels operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See DescribeMLModels for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the DescribeMLModels method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the DescribeMLModelsRequest method.
- // req, resp := client.DescribeMLModelsRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) DescribeMLModelsRequest(input *DescribeMLModelsInput) (req *request.Request, output *DescribeMLModelsOutput) {
- op := &request.Operation{
- Name: opDescribeMLModels,
- HTTPMethod: "POST",
- HTTPPath: "/",
- Paginator: &request.Paginator{
- InputTokens: []string{"NextToken"},
- OutputTokens: []string{"NextToken"},
- LimitToken: "Limit",
- TruncationToken: "",
- },
- }
- if input == nil {
- input = &DescribeMLModelsInput{}
- }
- req = c.newRequest(op, input, output)
- output = &DescribeMLModelsOutput{}
- req.Data = output
- return
- }
- // DescribeMLModels API operation for Amazon Machine Learning.
- //
- // Returns a list of MLModel that match the search criteria in the request.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation DescribeMLModels for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- func (c *MachineLearning) DescribeMLModels(input *DescribeMLModelsInput) (*DescribeMLModelsOutput, error) {
- req, out := c.DescribeMLModelsRequest(input)
- err := req.Send()
- return out, err
- }
- // DescribeMLModelsPages iterates over the pages of a DescribeMLModels operation,
- // calling the "fn" function with the response data for each page. To stop
- // iterating, return false from the fn function.
- //
- // See DescribeMLModels method for more information on how to use this operation.
- //
- // Note: This operation can generate multiple requests to a service.
- //
- // // Example iterating over at most 3 pages of a DescribeMLModels operation.
- // pageNum := 0
- // err := client.DescribeMLModelsPages(params,
- // func(page *DescribeMLModelsOutput, lastPage bool) bool {
- // pageNum++
- // fmt.Println(page)
- // return pageNum <= 3
- // })
- //
- func (c *MachineLearning) DescribeMLModelsPages(input *DescribeMLModelsInput, fn func(p *DescribeMLModelsOutput, lastPage bool) (shouldContinue bool)) error {
- page, _ := c.DescribeMLModelsRequest(input)
- page.Handlers.Build.PushBack(request.MakeAddToUserAgentFreeFormHandler("Paginator"))
- return page.EachPage(func(p interface{}, lastPage bool) bool {
- return fn(p.(*DescribeMLModelsOutput), lastPage)
- })
- }
- const opDescribeTags = "DescribeTags"
- // DescribeTagsRequest generates a "aws/request.Request" representing the
- // client's request for the DescribeTags operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See DescribeTags for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the DescribeTags method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the DescribeTagsRequest method.
- // req, resp := client.DescribeTagsRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) DescribeTagsRequest(input *DescribeTagsInput) (req *request.Request, output *DescribeTagsOutput) {
- op := &request.Operation{
- Name: opDescribeTags,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &DescribeTagsInput{}
- }
- req = c.newRequest(op, input, output)
- output = &DescribeTagsOutput{}
- req.Data = output
- return
- }
- // DescribeTags API operation for Amazon Machine Learning.
- //
- // Describes one or more of the tags for your Amazon ML object.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation DescribeTags for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * ResourceNotFoundException
- // A specified resource cannot be located.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- func (c *MachineLearning) DescribeTags(input *DescribeTagsInput) (*DescribeTagsOutput, error) {
- req, out := c.DescribeTagsRequest(input)
- err := req.Send()
- return out, err
- }
- const opGetBatchPrediction = "GetBatchPrediction"
- // GetBatchPredictionRequest generates a "aws/request.Request" representing the
- // client's request for the GetBatchPrediction operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See GetBatchPrediction for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the GetBatchPrediction method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the GetBatchPredictionRequest method.
- // req, resp := client.GetBatchPredictionRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) GetBatchPredictionRequest(input *GetBatchPredictionInput) (req *request.Request, output *GetBatchPredictionOutput) {
- op := &request.Operation{
- Name: opGetBatchPrediction,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &GetBatchPredictionInput{}
- }
- req = c.newRequest(op, input, output)
- output = &GetBatchPredictionOutput{}
- req.Data = output
- return
- }
- // GetBatchPrediction API operation for Amazon Machine Learning.
- //
- // Returns a BatchPrediction that includes detailed metadata, status, and data
- // file information for a Batch Prediction request.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation GetBatchPrediction for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * ResourceNotFoundException
- // A specified resource cannot be located.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- func (c *MachineLearning) GetBatchPrediction(input *GetBatchPredictionInput) (*GetBatchPredictionOutput, error) {
- req, out := c.GetBatchPredictionRequest(input)
- err := req.Send()
- return out, err
- }
- const opGetDataSource = "GetDataSource"
- // GetDataSourceRequest generates a "aws/request.Request" representing the
- // client's request for the GetDataSource operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See GetDataSource for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the GetDataSource method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the GetDataSourceRequest method.
- // req, resp := client.GetDataSourceRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) GetDataSourceRequest(input *GetDataSourceInput) (req *request.Request, output *GetDataSourceOutput) {
- op := &request.Operation{
- Name: opGetDataSource,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &GetDataSourceInput{}
- }
- req = c.newRequest(op, input, output)
- output = &GetDataSourceOutput{}
- req.Data = output
- return
- }
- // GetDataSource API operation for Amazon Machine Learning.
- //
- // Returns a DataSource that includes metadata and data file information, as
- // well as the current status of the DataSource.
- //
- // GetDataSource provides results in normal or verbose format. The verbose format
- // adds the schema description and the list of files pointed to by the DataSource
- // to the normal format.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation GetDataSource for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * ResourceNotFoundException
- // A specified resource cannot be located.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- func (c *MachineLearning) GetDataSource(input *GetDataSourceInput) (*GetDataSourceOutput, error) {
- req, out := c.GetDataSourceRequest(input)
- err := req.Send()
- return out, err
- }
- const opGetEvaluation = "GetEvaluation"
- // GetEvaluationRequest generates a "aws/request.Request" representing the
- // client's request for the GetEvaluation operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See GetEvaluation for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the GetEvaluation method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the GetEvaluationRequest method.
- // req, resp := client.GetEvaluationRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) GetEvaluationRequest(input *GetEvaluationInput) (req *request.Request, output *GetEvaluationOutput) {
- op := &request.Operation{
- Name: opGetEvaluation,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &GetEvaluationInput{}
- }
- req = c.newRequest(op, input, output)
- output = &GetEvaluationOutput{}
- req.Data = output
- return
- }
- // GetEvaluation API operation for Amazon Machine Learning.
- //
- // Returns an Evaluation that includes metadata as well as the current status
- // of the Evaluation.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation GetEvaluation for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * ResourceNotFoundException
- // A specified resource cannot be located.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- func (c *MachineLearning) GetEvaluation(input *GetEvaluationInput) (*GetEvaluationOutput, error) {
- req, out := c.GetEvaluationRequest(input)
- err := req.Send()
- return out, err
- }
- const opGetMLModel = "GetMLModel"
- // GetMLModelRequest generates a "aws/request.Request" representing the
- // client's request for the GetMLModel operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See GetMLModel for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the GetMLModel method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the GetMLModelRequest method.
- // req, resp := client.GetMLModelRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) GetMLModelRequest(input *GetMLModelInput) (req *request.Request, output *GetMLModelOutput) {
- op := &request.Operation{
- Name: opGetMLModel,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &GetMLModelInput{}
- }
- req = c.newRequest(op, input, output)
- output = &GetMLModelOutput{}
- req.Data = output
- return
- }
- // GetMLModel API operation for Amazon Machine Learning.
- //
- // Returns an MLModel that includes detailed metadata, data source information,
- // and the current status of the MLModel.
- //
- // GetMLModel provides results in normal or verbose format.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation GetMLModel for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * ResourceNotFoundException
- // A specified resource cannot be located.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- func (c *MachineLearning) GetMLModel(input *GetMLModelInput) (*GetMLModelOutput, error) {
- req, out := c.GetMLModelRequest(input)
- err := req.Send()
- return out, err
- }
- const opPredict = "Predict"
- // PredictRequest generates a "aws/request.Request" representing the
- // client's request for the Predict operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See Predict for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the Predict method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the PredictRequest method.
- // req, resp := client.PredictRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) PredictRequest(input *PredictInput) (req *request.Request, output *PredictOutput) {
- op := &request.Operation{
- Name: opPredict,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &PredictInput{}
- }
- req = c.newRequest(op, input, output)
- output = &PredictOutput{}
- req.Data = output
- return
- }
- // Predict API operation for Amazon Machine Learning.
- //
- // Generates a prediction for the observation using the specified ML Model.
- //
- // NoteNot all response parameters will be populated. Whether a response parameter
- // is populated depends on the type of model requested.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation Predict for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * ResourceNotFoundException
- // A specified resource cannot be located.
- //
- // * LimitExceededException
- // The subscriber exceeded the maximum number of operations. This exception
- // can occur when listing objects such as DataSource.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- // * PredictorNotMountedException
- // The exception is thrown when a predict request is made to an unmounted MLModel.
- //
- func (c *MachineLearning) Predict(input *PredictInput) (*PredictOutput, error) {
- req, out := c.PredictRequest(input)
- err := req.Send()
- return out, err
- }
- const opUpdateBatchPrediction = "UpdateBatchPrediction"
- // UpdateBatchPredictionRequest generates a "aws/request.Request" representing the
- // client's request for the UpdateBatchPrediction operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See UpdateBatchPrediction for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the UpdateBatchPrediction method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the UpdateBatchPredictionRequest method.
- // req, resp := client.UpdateBatchPredictionRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) UpdateBatchPredictionRequest(input *UpdateBatchPredictionInput) (req *request.Request, output *UpdateBatchPredictionOutput) {
- op := &request.Operation{
- Name: opUpdateBatchPrediction,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &UpdateBatchPredictionInput{}
- }
- req = c.newRequest(op, input, output)
- output = &UpdateBatchPredictionOutput{}
- req.Data = output
- return
- }
- // UpdateBatchPrediction API operation for Amazon Machine Learning.
- //
- // Updates the BatchPredictionName of a BatchPrediction.
- //
- // You can use the GetBatchPrediction operation to view the contents of the
- // updated data element.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation UpdateBatchPrediction for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * ResourceNotFoundException
- // A specified resource cannot be located.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- func (c *MachineLearning) UpdateBatchPrediction(input *UpdateBatchPredictionInput) (*UpdateBatchPredictionOutput, error) {
- req, out := c.UpdateBatchPredictionRequest(input)
- err := req.Send()
- return out, err
- }
- const opUpdateDataSource = "UpdateDataSource"
- // UpdateDataSourceRequest generates a "aws/request.Request" representing the
- // client's request for the UpdateDataSource operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See UpdateDataSource for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the UpdateDataSource method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the UpdateDataSourceRequest method.
- // req, resp := client.UpdateDataSourceRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) UpdateDataSourceRequest(input *UpdateDataSourceInput) (req *request.Request, output *UpdateDataSourceOutput) {
- op := &request.Operation{
- Name: opUpdateDataSource,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &UpdateDataSourceInput{}
- }
- req = c.newRequest(op, input, output)
- output = &UpdateDataSourceOutput{}
- req.Data = output
- return
- }
- // UpdateDataSource API operation for Amazon Machine Learning.
- //
- // Updates the DataSourceName of a DataSource.
- //
- // You can use the GetDataSource operation to view the contents of the updated
- // data element.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation UpdateDataSource for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * ResourceNotFoundException
- // A specified resource cannot be located.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- func (c *MachineLearning) UpdateDataSource(input *UpdateDataSourceInput) (*UpdateDataSourceOutput, error) {
- req, out := c.UpdateDataSourceRequest(input)
- err := req.Send()
- return out, err
- }
- const opUpdateEvaluation = "UpdateEvaluation"
- // UpdateEvaluationRequest generates a "aws/request.Request" representing the
- // client's request for the UpdateEvaluation operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See UpdateEvaluation for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the UpdateEvaluation method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the UpdateEvaluationRequest method.
- // req, resp := client.UpdateEvaluationRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) UpdateEvaluationRequest(input *UpdateEvaluationInput) (req *request.Request, output *UpdateEvaluationOutput) {
- op := &request.Operation{
- Name: opUpdateEvaluation,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &UpdateEvaluationInput{}
- }
- req = c.newRequest(op, input, output)
- output = &UpdateEvaluationOutput{}
- req.Data = output
- return
- }
- // UpdateEvaluation API operation for Amazon Machine Learning.
- //
- // Updates the EvaluationName of an Evaluation.
- //
- // You can use the GetEvaluation operation to view the contents of the updated
- // data element.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation UpdateEvaluation for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * ResourceNotFoundException
- // A specified resource cannot be located.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- func (c *MachineLearning) UpdateEvaluation(input *UpdateEvaluationInput) (*UpdateEvaluationOutput, error) {
- req, out := c.UpdateEvaluationRequest(input)
- err := req.Send()
- return out, err
- }
- const opUpdateMLModel = "UpdateMLModel"
- // UpdateMLModelRequest generates a "aws/request.Request" representing the
- // client's request for the UpdateMLModel operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // See UpdateMLModel for usage and error information.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the UpdateMLModel method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the UpdateMLModelRequest method.
- // req, resp := client.UpdateMLModelRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) UpdateMLModelRequest(input *UpdateMLModelInput) (req *request.Request, output *UpdateMLModelOutput) {
- op := &request.Operation{
- Name: opUpdateMLModel,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &UpdateMLModelInput{}
- }
- req = c.newRequest(op, input, output)
- output = &UpdateMLModelOutput{}
- req.Data = output
- return
- }
- // UpdateMLModel API operation for Amazon Machine Learning.
- //
- // Updates the MLModelName and the ScoreThreshold of an MLModel.
- //
- // You can use the GetMLModel operation to view the contents of the updated
- // data element.
- //
- // Returns awserr.Error for service API and SDK errors. Use runtime type assertions
- // with awserr.Error's Code and Message methods to get detailed information about
- // the error.
- //
- // See the AWS API reference guide for Amazon Machine Learning's
- // API operation UpdateMLModel for usage and error information.
- //
- // Returned Error Codes:
- // * InvalidInputException
- // An error on the client occurred. Typically, the cause is an invalid input
- // value.
- //
- // * ResourceNotFoundException
- // A specified resource cannot be located.
- //
- // * InternalServerException
- // An error on the server occurred when trying to process a request.
- //
- func (c *MachineLearning) UpdateMLModel(input *UpdateMLModelInput) (*UpdateMLModelOutput, error) {
- req, out := c.UpdateMLModelRequest(input)
- err := req.Send()
- return out, err
- }
- type AddTagsInput struct {
- _ struct{} `type:"structure"`
- // The ID of the ML object to tag. For example, exampleModelId.
- //
- // ResourceId is a required field
- ResourceId *string `min:"1" type:"string" required:"true"`
- // The type of the ML object to tag.
- //
- // ResourceType is a required field
- ResourceType *string `type:"string" required:"true" enum:"TaggableResourceType"`
- // The key-value pairs to use to create tags. If you specify a key without specifying
- // a value, Amazon ML creates a tag with the specified key and a value of null.
- //
- // Tags is a required field
- Tags []*Tag `type:"list" required:"true"`
- }
- // String returns the string representation
- func (s AddTagsInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s AddTagsInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *AddTagsInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "AddTagsInput"}
- if s.ResourceId == nil {
- invalidParams.Add(request.NewErrParamRequired("ResourceId"))
- }
- if s.ResourceId != nil && len(*s.ResourceId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("ResourceId", 1))
- }
- if s.ResourceType == nil {
- invalidParams.Add(request.NewErrParamRequired("ResourceType"))
- }
- if s.Tags == nil {
- invalidParams.Add(request.NewErrParamRequired("Tags"))
- }
- if s.Tags != nil {
- for i, v := range s.Tags {
- if v == nil {
- continue
- }
- if err := v.Validate(); err != nil {
- invalidParams.AddNested(fmt.Sprintf("%s[%v]", "Tags", i), err.(request.ErrInvalidParams))
- }
- }
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Amazon ML returns the following elements.
- type AddTagsOutput struct {
- _ struct{} `type:"structure"`
- // The ID of the ML object that was tagged.
- ResourceId *string `min:"1" type:"string"`
- // The type of the ML object that was tagged.
- ResourceType *string `type:"string" enum:"TaggableResourceType"`
- }
- // String returns the string representation
- func (s AddTagsOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s AddTagsOutput) GoString() string {
- return s.String()
- }
- // Represents the output of a GetBatchPrediction operation.
- //
- // The content consists of the detailed metadata, the status, and the data file
- // information of a Batch Prediction.
- type BatchPrediction struct {
- _ struct{} `type:"structure"`
- // The ID of the DataSource that points to the group of observations to predict.
- BatchPredictionDataSourceId *string `min:"1" type:"string"`
- // The ID assigned to the BatchPrediction at creation. This value should be
- // identical to the value of the BatchPredictionID in the request.
- BatchPredictionId *string `min:"1" type:"string"`
- // Long integer type that is a 64-bit signed number.
- ComputeTime *int64 `type:"long"`
- // The time that the BatchPrediction was created. The time is expressed in epoch
- // time.
- CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The AWS user account that invoked the BatchPrediction. The account type can
- // be either an AWS root account or an AWS Identity and Access Management (IAM)
- // user account.
- CreatedByIamUser *string `type:"string"`
- // A timestamp represented in epoch time.
- FinishedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The location of the data file or directory in Amazon Simple Storage Service
- // (Amazon S3).
- InputDataLocationS3 *string `type:"string"`
- // Long integer type that is a 64-bit signed number.
- InvalidRecordCount *int64 `type:"long"`
- // The time of the most recent edit to the BatchPrediction. The time is expressed
- // in epoch time.
- LastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The ID of the MLModel that generated predictions for the BatchPrediction
- // request.
- MLModelId *string `min:"1" type:"string"`
- // A description of the most recent details about processing the batch prediction
- // request.
- Message *string `type:"string"`
- // A user-supplied name or description of the BatchPrediction.
- Name *string `type:"string"`
- // The location of an Amazon S3 bucket or directory to receive the operation
- // results. The following substrings are not allowed in the s3 key portion of
- // the outputURI field: ':', '//', '/./', '/../'.
- OutputUri *string `type:"string"`
- // A timestamp represented in epoch time.
- StartedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The status of the BatchPrediction. This element can have one of the following
- // values:
- //
- // * PENDING - Amazon Machine Learning (Amazon ML) submitted a request to
- // generate predictions for a batch of observations.
- // * INPROGRESS - The process is underway.
- // * FAILED - The request to perform a batch prediction did not run to completion.
- // It is not usable.
- // * COMPLETED - The batch prediction process completed successfully.
- // * DELETED - The BatchPrediction is marked as deleted. It is not usable.
- Status *string `type:"string" enum:"EntityStatus"`
- // Long integer type that is a 64-bit signed number.
- TotalRecordCount *int64 `type:"long"`
- }
- // String returns the string representation
- func (s BatchPrediction) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s BatchPrediction) GoString() string {
- return s.String()
- }
- type CreateBatchPredictionInput struct {
- _ struct{} `type:"structure"`
- // The ID of the DataSource that points to the group of observations to predict.
- //
- // BatchPredictionDataSourceId is a required field
- BatchPredictionDataSourceId *string `min:"1" type:"string" required:"true"`
- // A user-supplied ID that uniquely identifies the BatchPrediction.
- //
- // BatchPredictionId is a required field
- BatchPredictionId *string `min:"1" type:"string" required:"true"`
- // A user-supplied name or description of the BatchPrediction. BatchPredictionName
- // can only use the UTF-8 character set.
- BatchPredictionName *string `type:"string"`
- // The ID of the MLModel that will generate predictions for the group of observations.
- //
- // MLModelId is a required field
- MLModelId *string `min:"1" type:"string" required:"true"`
- // The location of an Amazon Simple Storage Service (Amazon S3) bucket or directory
- // to store the batch prediction results. The following substrings are not allowed
- // in the s3 key portion of the outputURI field: ':', '//', '/./', '/../'.
- //
- // Amazon ML needs permissions to store and retrieve the logs on your behalf.
- // For information about how to set permissions, see the Amazon Machine Learning
- // Developer Guide (http://docs.aws.amazon.com/machine-learning/latest/dg).
- //
- // OutputUri is a required field
- OutputUri *string `type:"string" required:"true"`
- }
- // String returns the string representation
- func (s CreateBatchPredictionInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateBatchPredictionInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *CreateBatchPredictionInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "CreateBatchPredictionInput"}
- if s.BatchPredictionDataSourceId == nil {
- invalidParams.Add(request.NewErrParamRequired("BatchPredictionDataSourceId"))
- }
- if s.BatchPredictionDataSourceId != nil && len(*s.BatchPredictionDataSourceId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("BatchPredictionDataSourceId", 1))
- }
- if s.BatchPredictionId == nil {
- invalidParams.Add(request.NewErrParamRequired("BatchPredictionId"))
- }
- if s.BatchPredictionId != nil && len(*s.BatchPredictionId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("BatchPredictionId", 1))
- }
- if s.MLModelId == nil {
- invalidParams.Add(request.NewErrParamRequired("MLModelId"))
- }
- if s.MLModelId != nil && len(*s.MLModelId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1))
- }
- if s.OutputUri == nil {
- invalidParams.Add(request.NewErrParamRequired("OutputUri"))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a CreateBatchPrediction operation, and is an acknowledgement
- // that Amazon ML received the request.
- //
- // The CreateBatchPrediction operation is asynchronous. You can poll for status
- // updates by using the >GetBatchPrediction operation and checking the Status
- // parameter of the result.
- type CreateBatchPredictionOutput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the BatchPrediction. This value
- // is identical to the value of the BatchPredictionId in the request.
- BatchPredictionId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s CreateBatchPredictionOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateBatchPredictionOutput) GoString() string {
- return s.String()
- }
- type CreateDataSourceFromRDSInput struct {
- _ struct{} `type:"structure"`
- // The compute statistics for a DataSource. The statistics are generated from
- // the observation data referenced by a DataSource. Amazon ML uses the statistics
- // internally during MLModel training. This parameter must be set to true if
- // the DataSource needs to be used for MLModel training.
- ComputeStatistics *bool `type:"boolean"`
- // A user-supplied ID that uniquely identifies the DataSource. Typically, an
- // Amazon Resource Number (ARN) becomes the ID for a DataSource.
- //
- // DataSourceId is a required field
- DataSourceId *string `min:"1" type:"string" required:"true"`
- // A user-supplied name or description of the DataSource.
- DataSourceName *string `type:"string"`
- // The data specification of an Amazon RDS DataSource:
- //
- // RDSData is a required field
- RDSData *RDSDataSpec `type:"structure" required:"true"`
- // The role that Amazon ML assumes on behalf of the user to create and activate
- // a data pipeline in the user's account and copy data using the SelectSqlQuery
- // query from Amazon RDS to Amazon S3.
- //
- // RoleARN is a required field
- RoleARN *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s CreateDataSourceFromRDSInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateDataSourceFromRDSInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *CreateDataSourceFromRDSInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "CreateDataSourceFromRDSInput"}
- if s.DataSourceId == nil {
- invalidParams.Add(request.NewErrParamRequired("DataSourceId"))
- }
- if s.DataSourceId != nil && len(*s.DataSourceId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("DataSourceId", 1))
- }
- if s.RDSData == nil {
- invalidParams.Add(request.NewErrParamRequired("RDSData"))
- }
- if s.RoleARN == nil {
- invalidParams.Add(request.NewErrParamRequired("RoleARN"))
- }
- if s.RoleARN != nil && len(*s.RoleARN) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("RoleARN", 1))
- }
- if s.RDSData != nil {
- if err := s.RDSData.Validate(); err != nil {
- invalidParams.AddNested("RDSData", err.(request.ErrInvalidParams))
- }
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a CreateDataSourceFromRDS operation, and is an acknowledgement
- // that Amazon ML received the request.
- //
- // The CreateDataSourceFromRDS> operation is asynchronous. You can poll for
- // updates by using the GetBatchPrediction operation and checking the Status
- // parameter. You can inspect the Message when Status shows up as FAILED. You
- // can also check the progress of the copy operation by going to the DataPipeline
- // console and looking up the pipeline using the pipelineId from the describe
- // call.
- type CreateDataSourceFromRDSOutput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the datasource. This value should
- // be identical to the value of the DataSourceID in the request.
- DataSourceId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s CreateDataSourceFromRDSOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateDataSourceFromRDSOutput) GoString() string {
- return s.String()
- }
- type CreateDataSourceFromRedshiftInput struct {
- _ struct{} `type:"structure"`
- // The compute statistics for a DataSource. The statistics are generated from
- // the observation data referenced by a DataSource. Amazon ML uses the statistics
- // internally during MLModel training. This parameter must be set to true if
- // the DataSource needs to be used for MLModel training.
- ComputeStatistics *bool `type:"boolean"`
- // A user-supplied ID that uniquely identifies the DataSource.
- //
- // DataSourceId is a required field
- DataSourceId *string `min:"1" type:"string" required:"true"`
- // A user-supplied name or description of the DataSource.
- DataSourceName *string `type:"string"`
- // The data specification of an Amazon Redshift DataSource:
- //
- // * DatabaseInformation - DatabaseName - The name of the Amazon Redshift
- // database.
- // ClusterIdentifier - The unique ID for the Amazon Redshift cluster.
- //
- // * DatabaseCredentials - The AWS Identity and Access Management (IAM) credentials
- // that are used to connect to the Amazon Redshift database.
- //
- // * SelectSqlQuery - The query that is used to retrieve the observation
- // data for the Datasource.
- //
- // * S3StagingLocation - The Amazon Simple Storage Service (Amazon S3) location
- // for staging Amazon Redshift data. The data retrieved from Amazon Redshift
- // using the SelectSqlQuery query is stored in this location.
- //
- // * DataSchemaUri - The Amazon S3 location of the DataSchema.
- //
- // * DataSchema - A JSON string representing the schema. This is not required
- // if DataSchemaUri is specified.
- //
- // * DataRearrangement - A JSON string that represents the splitting and
- // rearrangement requirements for the DataSource.
- //
- // Sample - "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"
- //
- // DataSpec is a required field
- DataSpec *RedshiftDataSpec `type:"structure" required:"true"`
- // A fully specified role Amazon Resource Name (ARN). Amazon ML assumes the
- // role on behalf of the user to create the following:
- //
- // A security group to allow Amazon ML to execute the SelectSqlQuery query on
- // an Amazon Redshift cluster
- //
- // An Amazon S3 bucket policy to grant Amazon ML read/write permissions on the
- // S3StagingLocation
- //
- // RoleARN is a required field
- RoleARN *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s CreateDataSourceFromRedshiftInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateDataSourceFromRedshiftInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *CreateDataSourceFromRedshiftInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "CreateDataSourceFromRedshiftInput"}
- if s.DataSourceId == nil {
- invalidParams.Add(request.NewErrParamRequired("DataSourceId"))
- }
- if s.DataSourceId != nil && len(*s.DataSourceId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("DataSourceId", 1))
- }
- if s.DataSpec == nil {
- invalidParams.Add(request.NewErrParamRequired("DataSpec"))
- }
- if s.RoleARN == nil {
- invalidParams.Add(request.NewErrParamRequired("RoleARN"))
- }
- if s.RoleARN != nil && len(*s.RoleARN) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("RoleARN", 1))
- }
- if s.DataSpec != nil {
- if err := s.DataSpec.Validate(); err != nil {
- invalidParams.AddNested("DataSpec", err.(request.ErrInvalidParams))
- }
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a CreateDataSourceFromRedshift operation, and is
- // an acknowledgement that Amazon ML received the request.
- //
- // The CreateDataSourceFromRedshift operation is asynchronous. You can poll
- // for updates by using the GetBatchPrediction operation and checking the Status
- // parameter.
- type CreateDataSourceFromRedshiftOutput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the datasource. This value should
- // be identical to the value of the DataSourceID in the request.
- DataSourceId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s CreateDataSourceFromRedshiftOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateDataSourceFromRedshiftOutput) GoString() string {
- return s.String()
- }
- type CreateDataSourceFromS3Input struct {
- _ struct{} `type:"structure"`
- // The compute statistics for a DataSource. The statistics are generated from
- // the observation data referenced by a DataSource. Amazon ML uses the statistics
- // internally during MLModel training. This parameter must be set to true if
- // the DataSource needs to be used for MLModel training.
- ComputeStatistics *bool `type:"boolean"`
- // A user-supplied identifier that uniquely identifies the DataSource.
- //
- // DataSourceId is a required field
- DataSourceId *string `min:"1" type:"string" required:"true"`
- // A user-supplied name or description of the DataSource.
- DataSourceName *string `type:"string"`
- // The data specification of a DataSource:
- //
- // * DataLocationS3 - The Amazon S3 location of the observation data.
- //
- // * DataSchemaLocationS3 - The Amazon S3 location of the DataSchema.
- //
- // * DataSchema - A JSON string representing the schema. This is not required
- // if DataSchemaUri is specified.
- //
- // * DataRearrangement - A JSON string that represents the splitting and
- // rearrangement requirements for the Datasource.
- //
- // Sample - "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"
- //
- // DataSpec is a required field
- DataSpec *S3DataSpec `type:"structure" required:"true"`
- }
- // String returns the string representation
- func (s CreateDataSourceFromS3Input) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateDataSourceFromS3Input) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *CreateDataSourceFromS3Input) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "CreateDataSourceFromS3Input"}
- if s.DataSourceId == nil {
- invalidParams.Add(request.NewErrParamRequired("DataSourceId"))
- }
- if s.DataSourceId != nil && len(*s.DataSourceId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("DataSourceId", 1))
- }
- if s.DataSpec == nil {
- invalidParams.Add(request.NewErrParamRequired("DataSpec"))
- }
- if s.DataSpec != nil {
- if err := s.DataSpec.Validate(); err != nil {
- invalidParams.AddNested("DataSpec", err.(request.ErrInvalidParams))
- }
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a CreateDataSourceFromS3 operation, and is an acknowledgement
- // that Amazon ML received the request.
- //
- // The CreateDataSourceFromS3 operation is asynchronous. You can poll for updates
- // by using the GetBatchPrediction operation and checking the Status parameter.
- type CreateDataSourceFromS3Output struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the DataSource. This value should
- // be identical to the value of the DataSourceID in the request.
- DataSourceId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s CreateDataSourceFromS3Output) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateDataSourceFromS3Output) GoString() string {
- return s.String()
- }
- type CreateEvaluationInput struct {
- _ struct{} `type:"structure"`
- // The ID of the DataSource for the evaluation. The schema of the DataSource
- // must match the schema used to create the MLModel.
- //
- // EvaluationDataSourceId is a required field
- EvaluationDataSourceId *string `min:"1" type:"string" required:"true"`
- // A user-supplied ID that uniquely identifies the Evaluation.
- //
- // EvaluationId is a required field
- EvaluationId *string `min:"1" type:"string" required:"true"`
- // A user-supplied name or description of the Evaluation.
- EvaluationName *string `type:"string"`
- // The ID of the MLModel to evaluate.
- //
- // The schema used in creating the MLModel must match the schema of the DataSource
- // used in the Evaluation.
- //
- // MLModelId is a required field
- MLModelId *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s CreateEvaluationInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateEvaluationInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *CreateEvaluationInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "CreateEvaluationInput"}
- if s.EvaluationDataSourceId == nil {
- invalidParams.Add(request.NewErrParamRequired("EvaluationDataSourceId"))
- }
- if s.EvaluationDataSourceId != nil && len(*s.EvaluationDataSourceId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("EvaluationDataSourceId", 1))
- }
- if s.EvaluationId == nil {
- invalidParams.Add(request.NewErrParamRequired("EvaluationId"))
- }
- if s.EvaluationId != nil && len(*s.EvaluationId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("EvaluationId", 1))
- }
- if s.MLModelId == nil {
- invalidParams.Add(request.NewErrParamRequired("MLModelId"))
- }
- if s.MLModelId != nil && len(*s.MLModelId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a CreateEvaluation operation, and is an acknowledgement
- // that Amazon ML received the request.
- //
- // CreateEvaluation operation is asynchronous. You can poll for status updates
- // by using the GetEvcaluation operation and checking the Status parameter.
- type CreateEvaluationOutput struct {
- _ struct{} `type:"structure"`
- // The user-supplied ID that uniquely identifies the Evaluation. This value
- // should be identical to the value of the EvaluationId in the request.
- EvaluationId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s CreateEvaluationOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateEvaluationOutput) GoString() string {
- return s.String()
- }
- type CreateMLModelInput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the MLModel.
- //
- // MLModelId is a required field
- MLModelId *string `min:"1" type:"string" required:"true"`
- // A user-supplied name or description of the MLModel.
- MLModelName *string `type:"string"`
- // The category of supervised learning that this MLModel will address. Choose
- // from the following types:
- //
- // * Choose REGRESSION if the MLModel will be used to predict a numeric value.
- //
- // * Choose BINARY if the MLModel result has two possible values.
- // * Choose MULTICLASS if the MLModel result has a limited number of values.
- //
- // For more information, see the Amazon Machine Learning Developer Guide (http://docs.aws.amazon.com/machine-learning/latest/dg).
- //
- // MLModelType is a required field
- MLModelType *string `type:"string" required:"true" enum:"MLModelType"`
- // A list of the training parameters in the MLModel. The list is implemented
- // as a map of key-value pairs.
- //
- // The following is the current set of training parameters:
- //
- // * sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending
- // on the input data, the size of the model might affect its performance.
- //
- // The value is an integer that ranges from 100000 to 2147483648. The default
- // value is 33554432.
- //
- // * sgd.maxPasses - The number of times that the training process traverses
- // the observations to build the MLModel. The value is an integer that ranges
- // from 1 to 10000. The default value is 10.
- //
- // * sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling
- // the data improves a model's ability to find the optimal solution for a
- // variety of data types. The valid values are auto and none. The default
- // value is none. We strongly recommend that you shuffle your data.
- //
- // * sgd.l1RegularizationAmount - The coefficient regularization L1 norm.
- // It controls overfitting the data by penalizing large coefficients. This
- // tends to drive coefficients to zero, resulting in a sparse feature set.
- // If you use this parameter, start by specifying a small value, such as
- // 1.0E-08.
- //
- // The value is a double that ranges from 0 to MAX_DOUBLE. The default is to
- // not use L1 normalization. This parameter can't be used when L2 is specified.
- // Use this parameter sparingly.
- //
- // * sgd.l2RegularizationAmount - The coefficient regularization L2 norm.
- // It controls overfitting the data by penalizing large coefficients. This
- // tends to drive coefficients to small, nonzero values. If you use this
- // parameter, start by specifying a small value, such as 1.0E-08.
- //
- // The value is a double that ranges from 0 to MAX_DOUBLE. The default is to
- // not use L2 normalization. This parameter can't be used when L1 is specified.
- // Use this parameter sparingly.
- Parameters map[string]*string `type:"map"`
- // The data recipe for creating the MLModel. You must specify either the recipe
- // or its URI. If you don't specify a recipe or its URI, Amazon ML creates a
- // default.
- Recipe *string `type:"string"`
- // The Amazon Simple Storage Service (Amazon S3) location and file name that
- // contains the MLModel recipe. You must specify either the recipe or its URI.
- // If you don't specify a recipe or its URI, Amazon ML creates a default.
- RecipeUri *string `type:"string"`
- // The DataSource that points to the training data.
- //
- // TrainingDataSourceId is a required field
- TrainingDataSourceId *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s CreateMLModelInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateMLModelInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *CreateMLModelInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "CreateMLModelInput"}
- if s.MLModelId == nil {
- invalidParams.Add(request.NewErrParamRequired("MLModelId"))
- }
- if s.MLModelId != nil && len(*s.MLModelId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1))
- }
- if s.MLModelType == nil {
- invalidParams.Add(request.NewErrParamRequired("MLModelType"))
- }
- if s.TrainingDataSourceId == nil {
- invalidParams.Add(request.NewErrParamRequired("TrainingDataSourceId"))
- }
- if s.TrainingDataSourceId != nil && len(*s.TrainingDataSourceId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("TrainingDataSourceId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a CreateMLModel operation, and is an acknowledgement
- // that Amazon ML received the request.
- //
- // The CreateMLModel operation is asynchronous. You can poll for status updates
- // by using the GetMLModel operation and checking the Status parameter.
- type CreateMLModelOutput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the MLModel. This value should
- // be identical to the value of the MLModelId in the request.
- MLModelId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s CreateMLModelOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateMLModelOutput) GoString() string {
- return s.String()
- }
- type CreateRealtimeEndpointInput struct {
- _ struct{} `type:"structure"`
- // The ID assigned to the MLModel during creation.
- //
- // MLModelId is a required field
- MLModelId *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s CreateRealtimeEndpointInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateRealtimeEndpointInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *CreateRealtimeEndpointInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "CreateRealtimeEndpointInput"}
- if s.MLModelId == nil {
- invalidParams.Add(request.NewErrParamRequired("MLModelId"))
- }
- if s.MLModelId != nil && len(*s.MLModelId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of an CreateRealtimeEndpoint operation.
- //
- // The result contains the MLModelId and the endpoint information for the MLModel.
- //
- // The endpoint information includes the URI of the MLModel; that is, the location
- // to send online prediction requests for the specified MLModel.
- type CreateRealtimeEndpointOutput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the MLModel. This value should
- // be identical to the value of the MLModelId in the request.
- MLModelId *string `min:"1" type:"string"`
- // The endpoint information of the MLModel
- RealtimeEndpointInfo *RealtimeEndpointInfo `type:"structure"`
- }
- // String returns the string representation
- func (s CreateRealtimeEndpointOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateRealtimeEndpointOutput) GoString() string {
- return s.String()
- }
- // Represents the output of the GetDataSource operation.
- //
- // The content consists of the detailed metadata and data file information and
- // the current status of the DataSource.
- type DataSource struct {
- _ struct{} `type:"structure"`
- // The parameter is true if statistics need to be generated from the observation
- // data.
- ComputeStatistics *bool `type:"boolean"`
- // Long integer type that is a 64-bit signed number.
- ComputeTime *int64 `type:"long"`
- // The time that the DataSource was created. The time is expressed in epoch
- // time.
- CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The AWS user account from which the DataSource was created. The account type
- // can be either an AWS root account or an AWS Identity and Access Management
- // (IAM) user account.
- CreatedByIamUser *string `type:"string"`
- // The location and name of the data in Amazon Simple Storage Service (Amazon
- // S3) that is used by a DataSource.
- DataLocationS3 *string `type:"string"`
- // A JSON string that represents the splitting and rearrangement requirement
- // used when this DataSource was created.
- DataRearrangement *string `type:"string"`
- // The total number of observations contained in the data files that the DataSource
- // references.
- DataSizeInBytes *int64 `type:"long"`
- // The ID that is assigned to the DataSource during creation.
- DataSourceId *string `min:"1" type:"string"`
- // A timestamp represented in epoch time.
- FinishedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The time of the most recent edit to the BatchPrediction. The time is expressed
- // in epoch time.
- LastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // A description of the most recent details about creating the DataSource.
- Message *string `type:"string"`
- // A user-supplied name or description of the DataSource.
- Name *string `type:"string"`
- // The number of data files referenced by the DataSource.
- NumberOfFiles *int64 `type:"long"`
- // The datasource details that are specific to Amazon RDS.
- RDSMetadata *RDSMetadata `type:"structure"`
- // Describes the DataSource details specific to Amazon Redshift.
- RedshiftMetadata *RedshiftMetadata `type:"structure"`
- // The Amazon Resource Name (ARN) of an AWS IAM Role (http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html#roles-about-termsandconcepts),
- // such as the following: arn:aws:iam::account:role/rolename.
- RoleARN *string `min:"1" type:"string"`
- // A timestamp represented in epoch time.
- StartedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The current status of the DataSource. This element can have one of the following
- // values:
- //
- // * PENDING - Amazon Machine Learning (Amazon ML) submitted a request to
- // create a DataSource.
- // * INPROGRESS - The creation process is underway.
- // * FAILED - The request to create a DataSource did not run to completion.
- // It is not usable.
- // * COMPLETED - The creation process completed successfully.
- // * DELETED - The DataSource is marked as deleted. It is not usable.
- Status *string `type:"string" enum:"EntityStatus"`
- }
- // String returns the string representation
- func (s DataSource) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DataSource) GoString() string {
- return s.String()
- }
- type DeleteBatchPredictionInput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the BatchPrediction.
- //
- // BatchPredictionId is a required field
- BatchPredictionId *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s DeleteBatchPredictionInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DeleteBatchPredictionInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *DeleteBatchPredictionInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "DeleteBatchPredictionInput"}
- if s.BatchPredictionId == nil {
- invalidParams.Add(request.NewErrParamRequired("BatchPredictionId"))
- }
- if s.BatchPredictionId != nil && len(*s.BatchPredictionId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("BatchPredictionId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a DeleteBatchPrediction operation.
- //
- // You can use the GetBatchPrediction operation and check the value of the Status
- // parameter to see whether a BatchPrediction is marked as DELETED.
- type DeleteBatchPredictionOutput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the BatchPrediction. This value
- // should be identical to the value of the BatchPredictionID in the request.
- BatchPredictionId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s DeleteBatchPredictionOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DeleteBatchPredictionOutput) GoString() string {
- return s.String()
- }
- type DeleteDataSourceInput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the DataSource.
- //
- // DataSourceId is a required field
- DataSourceId *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s DeleteDataSourceInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DeleteDataSourceInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *DeleteDataSourceInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "DeleteDataSourceInput"}
- if s.DataSourceId == nil {
- invalidParams.Add(request.NewErrParamRequired("DataSourceId"))
- }
- if s.DataSourceId != nil && len(*s.DataSourceId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("DataSourceId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a DeleteDataSource operation.
- type DeleteDataSourceOutput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the DataSource. This value should
- // be identical to the value of the DataSourceID in the request.
- DataSourceId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s DeleteDataSourceOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DeleteDataSourceOutput) GoString() string {
- return s.String()
- }
- type DeleteEvaluationInput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the Evaluation to delete.
- //
- // EvaluationId is a required field
- EvaluationId *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s DeleteEvaluationInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DeleteEvaluationInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *DeleteEvaluationInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "DeleteEvaluationInput"}
- if s.EvaluationId == nil {
- invalidParams.Add(request.NewErrParamRequired("EvaluationId"))
- }
- if s.EvaluationId != nil && len(*s.EvaluationId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("EvaluationId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a DeleteEvaluation operation. The output indicates
- // that Amazon Machine Learning (Amazon ML) received the request.
- //
- // You can use the GetEvaluation operation and check the value of the Status
- // parameter to see whether an Evaluation is marked as DELETED.
- type DeleteEvaluationOutput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the Evaluation. This value should
- // be identical to the value of the EvaluationId in the request.
- EvaluationId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s DeleteEvaluationOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DeleteEvaluationOutput) GoString() string {
- return s.String()
- }
- type DeleteMLModelInput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the MLModel.
- //
- // MLModelId is a required field
- MLModelId *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s DeleteMLModelInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DeleteMLModelInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *DeleteMLModelInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "DeleteMLModelInput"}
- if s.MLModelId == nil {
- invalidParams.Add(request.NewErrParamRequired("MLModelId"))
- }
- if s.MLModelId != nil && len(*s.MLModelId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a DeleteMLModel operation.
- //
- // You can use the GetMLModel operation and check the value of the Status parameter
- // to see whether an MLModel is marked as DELETED.
- type DeleteMLModelOutput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the MLModel. This value should
- // be identical to the value of the MLModelID in the request.
- MLModelId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s DeleteMLModelOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DeleteMLModelOutput) GoString() string {
- return s.String()
- }
- type DeleteRealtimeEndpointInput struct {
- _ struct{} `type:"structure"`
- // The ID assigned to the MLModel during creation.
- //
- // MLModelId is a required field
- MLModelId *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s DeleteRealtimeEndpointInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DeleteRealtimeEndpointInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *DeleteRealtimeEndpointInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "DeleteRealtimeEndpointInput"}
- if s.MLModelId == nil {
- invalidParams.Add(request.NewErrParamRequired("MLModelId"))
- }
- if s.MLModelId != nil && len(*s.MLModelId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of an DeleteRealtimeEndpoint operation.
- //
- // The result contains the MLModelId and the endpoint information for the MLModel.
- type DeleteRealtimeEndpointOutput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the MLModel. This value should
- // be identical to the value of the MLModelId in the request.
- MLModelId *string `min:"1" type:"string"`
- // The endpoint information of the MLModel
- RealtimeEndpointInfo *RealtimeEndpointInfo `type:"structure"`
- }
- // String returns the string representation
- func (s DeleteRealtimeEndpointOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DeleteRealtimeEndpointOutput) GoString() string {
- return s.String()
- }
- type DeleteTagsInput struct {
- _ struct{} `type:"structure"`
- // The ID of the tagged ML object. For example, exampleModelId.
- //
- // ResourceId is a required field
- ResourceId *string `min:"1" type:"string" required:"true"`
- // The type of the tagged ML object.
- //
- // ResourceType is a required field
- ResourceType *string `type:"string" required:"true" enum:"TaggableResourceType"`
- // One or more tags to delete.
- //
- // TagKeys is a required field
- TagKeys []*string `type:"list" required:"true"`
- }
- // String returns the string representation
- func (s DeleteTagsInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DeleteTagsInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *DeleteTagsInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "DeleteTagsInput"}
- if s.ResourceId == nil {
- invalidParams.Add(request.NewErrParamRequired("ResourceId"))
- }
- if s.ResourceId != nil && len(*s.ResourceId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("ResourceId", 1))
- }
- if s.ResourceType == nil {
- invalidParams.Add(request.NewErrParamRequired("ResourceType"))
- }
- if s.TagKeys == nil {
- invalidParams.Add(request.NewErrParamRequired("TagKeys"))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Amazon ML returns the following elements.
- type DeleteTagsOutput struct {
- _ struct{} `type:"structure"`
- // The ID of the ML object from which tags were deleted.
- ResourceId *string `min:"1" type:"string"`
- // The type of the ML object from which tags were deleted.
- ResourceType *string `type:"string" enum:"TaggableResourceType"`
- }
- // String returns the string representation
- func (s DeleteTagsOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DeleteTagsOutput) GoString() string {
- return s.String()
- }
- type DescribeBatchPredictionsInput struct {
- _ struct{} `type:"structure"`
- // The equal to operator. The BatchPrediction results will have FilterVariable
- // values that exactly match the value specified with EQ.
- EQ *string `type:"string"`
- // Use one of the following variables to filter a list of BatchPrediction:
- //
- // * CreatedAt - Sets the search criteria to the BatchPrediction creation
- // date.
- // * Status - Sets the search criteria to the BatchPrediction status.
- // * Name - Sets the search criteria to the contents of the BatchPredictionName.
- //
- // * IAMUser - Sets the search criteria to the user account that invoked
- // the BatchPrediction creation.
- // * MLModelId - Sets the search criteria to the MLModel used in the BatchPrediction.
- //
- // * DataSourceId - Sets the search criteria to the DataSource used in the
- // BatchPrediction.
- // * DataURI - Sets the search criteria to the data file(s) used in the BatchPrediction.
- // The URL can identify either a file or an Amazon Simple Storage Solution
- // (Amazon S3) bucket or directory.
- FilterVariable *string `type:"string" enum:"BatchPredictionFilterVariable"`
- // The greater than or equal to operator. The BatchPrediction results will have
- // FilterVariable values that are greater than or equal to the value specified
- // with GE.
- GE *string `type:"string"`
- // The greater than operator. The BatchPrediction results will have FilterVariable
- // values that are greater than the value specified with GT.
- GT *string `type:"string"`
- // The less than or equal to operator. The BatchPrediction results will have
- // FilterVariable values that are less than or equal to the value specified
- // with LE.
- LE *string `type:"string"`
- // The less than operator. The BatchPrediction results will have FilterVariable
- // values that are less than the value specified with LT.
- LT *string `type:"string"`
- // The number of pages of information to include in the result. The range of
- // acceptable values is 1 through 100. The default value is 100.
- Limit *int64 `min:"1" type:"integer"`
- // The not equal to operator. The BatchPrediction results will have FilterVariable
- // values not equal to the value specified with NE.
- NE *string `type:"string"`
- // An ID of the page in the paginated results.
- NextToken *string `type:"string"`
- // A string that is found at the beginning of a variable, such as Name or Id.
- //
- // For example, a Batch Prediction operation could have the Name2014-09-09-HolidayGiftMailer.
- // To search for this BatchPrediction, select Name for the FilterVariable and
- // any of the following strings for the Prefix:
- //
- // * 2014-09
- //
- // * 2014-09-09
- //
- // * 2014-09-09-Holiday
- Prefix *string `type:"string"`
- // A two-value parameter that determines the sequence of the resulting list
- // of MLModels.
- //
- // * asc - Arranges the list in ascending order (A-Z, 0-9).
- // * dsc - Arranges the list in descending order (Z-A, 9-0).
- // Results are sorted by FilterVariable.
- SortOrder *string `type:"string" enum:"SortOrder"`
- }
- // String returns the string representation
- func (s DescribeBatchPredictionsInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DescribeBatchPredictionsInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *DescribeBatchPredictionsInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "DescribeBatchPredictionsInput"}
- if s.Limit != nil && *s.Limit < 1 {
- invalidParams.Add(request.NewErrParamMinValue("Limit", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a DescribeBatchPredictions operation. The content
- // is essentially a list of BatchPredictions.
- type DescribeBatchPredictionsOutput struct {
- _ struct{} `type:"structure"`
- // The ID of the next page in the paginated results that indicates at least
- // one more page follows.
- NextToken *string `type:"string"`
- // A list of BatchPrediction objects that meet the search criteria.
- Results []*BatchPrediction `type:"list"`
- }
- // String returns the string representation
- func (s DescribeBatchPredictionsOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DescribeBatchPredictionsOutput) GoString() string {
- return s.String()
- }
- type DescribeDataSourcesInput struct {
- _ struct{} `type:"structure"`
- // The equal to operator. The DataSource results will have FilterVariable values
- // that exactly match the value specified with EQ.
- EQ *string `type:"string"`
- // Use one of the following variables to filter a list of DataSource:
- //
- // * CreatedAt - Sets the search criteria to DataSource creation dates.
- // * Status - Sets the search criteria to DataSource statuses.
- // * Name - Sets the search criteria to the contents of DataSourceName.
- // * DataUri - Sets the search criteria to the URI of data files used to
- // create the DataSource. The URI can identify either a file or an Amazon
- // Simple Storage Service (Amazon S3) bucket or directory.
- // * IAMUser - Sets the search criteria to the user account that invoked
- // the DataSource creation.
- FilterVariable *string `type:"string" enum:"DataSourceFilterVariable"`
- // The greater than or equal to operator. The DataSource results will have FilterVariable
- // values that are greater than or equal to the value specified with GE.
- GE *string `type:"string"`
- // The greater than operator. The DataSource results will have FilterVariable
- // values that are greater than the value specified with GT.
- GT *string `type:"string"`
- // The less than or equal to operator. The DataSource results will have FilterVariable
- // values that are less than or equal to the value specified with LE.
- LE *string `type:"string"`
- // The less than operator. The DataSource results will have FilterVariable values
- // that are less than the value specified with LT.
- LT *string `type:"string"`
- // The maximum number of DataSource to include in the result.
- Limit *int64 `min:"1" type:"integer"`
- // The not equal to operator. The DataSource results will have FilterVariable
- // values not equal to the value specified with NE.
- NE *string `type:"string"`
- // The ID of the page in the paginated results.
- NextToken *string `type:"string"`
- // A string that is found at the beginning of a variable, such as Name or Id.
- //
- // For example, a DataSource could have the Name2014-09-09-HolidayGiftMailer.
- // To search for this DataSource, select Name for the FilterVariable and any
- // of the following strings for the Prefix:
- //
- // * 2014-09
- //
- // * 2014-09-09
- //
- // * 2014-09-09-Holiday
- Prefix *string `type:"string"`
- // A two-value parameter that determines the sequence of the resulting list
- // of DataSource.
- //
- // * asc - Arranges the list in ascending order (A-Z, 0-9).
- // * dsc - Arranges the list in descending order (Z-A, 9-0).
- // Results are sorted by FilterVariable.
- SortOrder *string `type:"string" enum:"SortOrder"`
- }
- // String returns the string representation
- func (s DescribeDataSourcesInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DescribeDataSourcesInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *DescribeDataSourcesInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "DescribeDataSourcesInput"}
- if s.Limit != nil && *s.Limit < 1 {
- invalidParams.Add(request.NewErrParamMinValue("Limit", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the query results from a DescribeDataSources operation. The content
- // is essentially a list of DataSource.
- type DescribeDataSourcesOutput struct {
- _ struct{} `type:"structure"`
- // An ID of the next page in the paginated results that indicates at least one
- // more page follows.
- NextToken *string `type:"string"`
- // A list of DataSource that meet the search criteria.
- Results []*DataSource `type:"list"`
- }
- // String returns the string representation
- func (s DescribeDataSourcesOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DescribeDataSourcesOutput) GoString() string {
- return s.String()
- }
- type DescribeEvaluationsInput struct {
- _ struct{} `type:"structure"`
- // The equal to operator. The Evaluation results will have FilterVariable values
- // that exactly match the value specified with EQ.
- EQ *string `type:"string"`
- // Use one of the following variable to filter a list of Evaluation objects:
- //
- // * CreatedAt - Sets the search criteria to the Evaluation creation date.
- //
- // * Status - Sets the search criteria to the Evaluation status.
- // * Name - Sets the search criteria to the contents of EvaluationName.
- // * IAMUser - Sets the search criteria to the user account that invoked
- // an Evaluation.
- // * MLModelId - Sets the search criteria to the MLModel that was evaluated.
- //
- // * DataSourceId - Sets the search criteria to the DataSource used in Evaluation.
- //
- // * DataUri - Sets the search criteria to the data file(s) used in Evaluation.
- // The URL can identify either a file or an Amazon Simple Storage Solution
- // (Amazon S3) bucket or directory.
- FilterVariable *string `type:"string" enum:"EvaluationFilterVariable"`
- // The greater than or equal to operator. The Evaluation results will have FilterVariable
- // values that are greater than or equal to the value specified with GE.
- GE *string `type:"string"`
- // The greater than operator. The Evaluation results will have FilterVariable
- // values that are greater than the value specified with GT.
- GT *string `type:"string"`
- // The less than or equal to operator. The Evaluation results will have FilterVariable
- // values that are less than or equal to the value specified with LE.
- LE *string `type:"string"`
- // The less than operator. The Evaluation results will have FilterVariable values
- // that are less than the value specified with LT.
- LT *string `type:"string"`
- // The maximum number of Evaluation to include in the result.
- Limit *int64 `min:"1" type:"integer"`
- // The not equal to operator. The Evaluation results will have FilterVariable
- // values not equal to the value specified with NE.
- NE *string `type:"string"`
- // The ID of the page in the paginated results.
- NextToken *string `type:"string"`
- // A string that is found at the beginning of a variable, such as Name or Id.
- //
- // For example, an Evaluation could have the Name2014-09-09-HolidayGiftMailer.
- // To search for this Evaluation, select Name for the FilterVariable and any
- // of the following strings for the Prefix:
- //
- // * 2014-09
- //
- // * 2014-09-09
- //
- // * 2014-09-09-Holiday
- Prefix *string `type:"string"`
- // A two-value parameter that determines the sequence of the resulting list
- // of Evaluation.
- //
- // * asc - Arranges the list in ascending order (A-Z, 0-9).
- // * dsc - Arranges the list in descending order (Z-A, 9-0).
- // Results are sorted by FilterVariable.
- SortOrder *string `type:"string" enum:"SortOrder"`
- }
- // String returns the string representation
- func (s DescribeEvaluationsInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DescribeEvaluationsInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *DescribeEvaluationsInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "DescribeEvaluationsInput"}
- if s.Limit != nil && *s.Limit < 1 {
- invalidParams.Add(request.NewErrParamMinValue("Limit", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the query results from a DescribeEvaluations operation. The content
- // is essentially a list of Evaluation.
- type DescribeEvaluationsOutput struct {
- _ struct{} `type:"structure"`
- // The ID of the next page in the paginated results that indicates at least
- // one more page follows.
- NextToken *string `type:"string"`
- // A list of Evaluation that meet the search criteria.
- Results []*Evaluation `type:"list"`
- }
- // String returns the string representation
- func (s DescribeEvaluationsOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DescribeEvaluationsOutput) GoString() string {
- return s.String()
- }
- type DescribeMLModelsInput struct {
- _ struct{} `type:"structure"`
- // The equal to operator. The MLModel results will have FilterVariable values
- // that exactly match the value specified with EQ.
- EQ *string `type:"string"`
- // Use one of the following variables to filter a list of MLModel:
- //
- // * CreatedAt - Sets the search criteria to MLModel creation date.
- // * Status - Sets the search criteria to MLModel status.
- // * Name - Sets the search criteria to the contents of MLModelName.
- // * IAMUser - Sets the search criteria to the user account that invoked
- // the MLModel creation.
- // * TrainingDataSourceId - Sets the search criteria to the DataSource used
- // to train one or more MLModel.
- // * RealtimeEndpointStatus - Sets the search criteria to the MLModel real-time
- // endpoint status.
- // * MLModelType - Sets the search criteria to MLModel type: binary, regression,
- // or multi-class.
- // * Algorithm - Sets the search criteria to the algorithm that the MLModel
- // uses.
- // * TrainingDataURI - Sets the search criteria to the data file(s) used
- // in training a MLModel. The URL can identify either a file or an Amazon
- // Simple Storage Service (Amazon S3) bucket or directory.
- FilterVariable *string `type:"string" enum:"MLModelFilterVariable"`
- // The greater than or equal to operator. The MLModel results will have FilterVariable
- // values that are greater than or equal to the value specified with GE.
- GE *string `type:"string"`
- // The greater than operator. The MLModel results will have FilterVariable values
- // that are greater than the value specified with GT.
- GT *string `type:"string"`
- // The less than or equal to operator. The MLModel results will have FilterVariable
- // values that are less than or equal to the value specified with LE.
- LE *string `type:"string"`
- // The less than operator. The MLModel results will have FilterVariable values
- // that are less than the value specified with LT.
- LT *string `type:"string"`
- // The number of pages of information to include in the result. The range of
- // acceptable values is 1 through 100. The default value is 100.
- Limit *int64 `min:"1" type:"integer"`
- // The not equal to operator. The MLModel results will have FilterVariable values
- // not equal to the value specified with NE.
- NE *string `type:"string"`
- // The ID of the page in the paginated results.
- NextToken *string `type:"string"`
- // A string that is found at the beginning of a variable, such as Name or Id.
- //
- // For example, an MLModel could have the Name2014-09-09-HolidayGiftMailer.
- // To search for this MLModel, select Name for the FilterVariable and any of
- // the following strings for the Prefix:
- //
- // * 2014-09
- //
- // * 2014-09-09
- //
- // * 2014-09-09-Holiday
- Prefix *string `type:"string"`
- // A two-value parameter that determines the sequence of the resulting list
- // of MLModel.
- //
- // * asc - Arranges the list in ascending order (A-Z, 0-9).
- // * dsc - Arranges the list in descending order (Z-A, 9-0).
- // Results are sorted by FilterVariable.
- SortOrder *string `type:"string" enum:"SortOrder"`
- }
- // String returns the string representation
- func (s DescribeMLModelsInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DescribeMLModelsInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *DescribeMLModelsInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "DescribeMLModelsInput"}
- if s.Limit != nil && *s.Limit < 1 {
- invalidParams.Add(request.NewErrParamMinValue("Limit", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a DescribeMLModels operation. The content is essentially
- // a list of MLModel.
- type DescribeMLModelsOutput struct {
- _ struct{} `type:"structure"`
- // The ID of the next page in the paginated results that indicates at least
- // one more page follows.
- NextToken *string `type:"string"`
- // A list of MLModel that meet the search criteria.
- Results []*MLModel `type:"list"`
- }
- // String returns the string representation
- func (s DescribeMLModelsOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DescribeMLModelsOutput) GoString() string {
- return s.String()
- }
- type DescribeTagsInput struct {
- _ struct{} `type:"structure"`
- // The ID of the ML object. For example, exampleModelId.
- //
- // ResourceId is a required field
- ResourceId *string `min:"1" type:"string" required:"true"`
- // The type of the ML object.
- //
- // ResourceType is a required field
- ResourceType *string `type:"string" required:"true" enum:"TaggableResourceType"`
- }
- // String returns the string representation
- func (s DescribeTagsInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DescribeTagsInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *DescribeTagsInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "DescribeTagsInput"}
- if s.ResourceId == nil {
- invalidParams.Add(request.NewErrParamRequired("ResourceId"))
- }
- if s.ResourceId != nil && len(*s.ResourceId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("ResourceId", 1))
- }
- if s.ResourceType == nil {
- invalidParams.Add(request.NewErrParamRequired("ResourceType"))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Amazon ML returns the following elements.
- type DescribeTagsOutput struct {
- _ struct{} `type:"structure"`
- // The ID of the tagged ML object.
- ResourceId *string `min:"1" type:"string"`
- // The type of the tagged ML object.
- ResourceType *string `type:"string" enum:"TaggableResourceType"`
- // A list of tags associated with the ML object.
- Tags []*Tag `type:"list"`
- }
- // String returns the string representation
- func (s DescribeTagsOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DescribeTagsOutput) GoString() string {
- return s.String()
- }
- // Represents the output of GetEvaluation operation.
- //
- // The content consists of the detailed metadata and data file information and
- // the current status of the Evaluation.
- type Evaluation struct {
- _ struct{} `type:"structure"`
- // Long integer type that is a 64-bit signed number.
- ComputeTime *int64 `type:"long"`
- // The time that the Evaluation was created. The time is expressed in epoch
- // time.
- CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The AWS user account that invoked the evaluation. The account type can be
- // either an AWS root account or an AWS Identity and Access Management (IAM)
- // user account.
- CreatedByIamUser *string `type:"string"`
- // The ID of the DataSource that is used to evaluate the MLModel.
- EvaluationDataSourceId *string `min:"1" type:"string"`
- // The ID that is assigned to the Evaluation at creation.
- EvaluationId *string `min:"1" type:"string"`
- // A timestamp represented in epoch time.
- FinishedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The location and name of the data in Amazon Simple Storage Server (Amazon
- // S3) that is used in the evaluation.
- InputDataLocationS3 *string `type:"string"`
- // The time of the most recent edit to the Evaluation. The time is expressed
- // in epoch time.
- LastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The ID of the MLModel that is the focus of the evaluation.
- MLModelId *string `min:"1" type:"string"`
- // A description of the most recent details about evaluating the MLModel.
- Message *string `type:"string"`
- // A user-supplied name or description of the Evaluation.
- Name *string `type:"string"`
- // Measurements of how well the MLModel performed, using observations referenced
- // by the DataSource. One of the following metrics is returned, based on the
- // type of the MLModel:
- //
- // * BinaryAUC: A binary MLModel uses the Area Under the Curve (AUC) technique
- // to measure performance.
- //
- // * RegressionRMSE: A regression MLModel uses the Root Mean Square Error
- // (RMSE) technique to measure performance. RMSE measures the difference
- // between predicted and actual values for a single variable.
- //
- // * MulticlassAvgFScore: A multiclass MLModel uses the F1 score technique
- // to measure performance.
- //
- // For more information about performance metrics, please see the Amazon Machine
- // Learning Developer Guide (http://docs.aws.amazon.com/machine-learning/latest/dg).
- PerformanceMetrics *PerformanceMetrics `type:"structure"`
- // A timestamp represented in epoch time.
- StartedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The status of the evaluation. This element can have one of the following
- // values:
- //
- // * PENDING - Amazon Machine Learning (Amazon ML) submitted a request to
- // evaluate an MLModel.
- // * INPROGRESS - The evaluation is underway.
- // * FAILED - The request to evaluate an MLModel did not run to completion.
- // It is not usable.
- // * COMPLETED - The evaluation process completed successfully.
- // * DELETED - The Evaluation is marked as deleted. It is not usable.
- Status *string `type:"string" enum:"EntityStatus"`
- }
- // String returns the string representation
- func (s Evaluation) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s Evaluation) GoString() string {
- return s.String()
- }
- type GetBatchPredictionInput struct {
- _ struct{} `type:"structure"`
- // An ID assigned to the BatchPrediction at creation.
- //
- // BatchPredictionId is a required field
- BatchPredictionId *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s GetBatchPredictionInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s GetBatchPredictionInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *GetBatchPredictionInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "GetBatchPredictionInput"}
- if s.BatchPredictionId == nil {
- invalidParams.Add(request.NewErrParamRequired("BatchPredictionId"))
- }
- if s.BatchPredictionId != nil && len(*s.BatchPredictionId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("BatchPredictionId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a GetBatchPrediction operation and describes a BatchPrediction.
- type GetBatchPredictionOutput struct {
- _ struct{} `type:"structure"`
- // The ID of the DataSource that was used to create the BatchPrediction.
- BatchPredictionDataSourceId *string `min:"1" type:"string"`
- // An ID assigned to the BatchPrediction at creation. This value should be identical
- // to the value of the BatchPredictionID in the request.
- BatchPredictionId *string `min:"1" type:"string"`
- // The approximate CPU time in milliseconds that Amazon Machine Learning spent
- // processing the BatchPrediction, normalized and scaled on computation resources.
- // ComputeTime is only available if the BatchPrediction is in the COMPLETED
- // state.
- ComputeTime *int64 `type:"long"`
- // The time when the BatchPrediction was created. The time is expressed in epoch
- // time.
- CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The AWS user account that invoked the BatchPrediction. The account type can
- // be either an AWS root account or an AWS Identity and Access Management (IAM)
- // user account.
- CreatedByIamUser *string `type:"string"`
- // The epoch time when Amazon Machine Learning marked the BatchPrediction as
- // COMPLETED or FAILED. FinishedAt is only available when the BatchPrediction
- // is in the COMPLETED or FAILED state.
- FinishedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The location of the data file or directory in Amazon Simple Storage Service
- // (Amazon S3).
- InputDataLocationS3 *string `type:"string"`
- // The number of invalid records that Amazon Machine Learning saw while processing
- // the BatchPrediction.
- InvalidRecordCount *int64 `type:"long"`
- // The time of the most recent edit to BatchPrediction. The time is expressed
- // in epoch time.
- LastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // A link to the file that contains logs of the CreateBatchPrediction operation.
- LogUri *string `type:"string"`
- // The ID of the MLModel that generated predictions for the BatchPrediction
- // request.
- MLModelId *string `min:"1" type:"string"`
- // A description of the most recent details about processing the batch prediction
- // request.
- Message *string `type:"string"`
- // A user-supplied name or description of the BatchPrediction.
- Name *string `type:"string"`
- // The location of an Amazon S3 bucket or directory to receive the operation
- // results.
- OutputUri *string `type:"string"`
- // The epoch time when Amazon Machine Learning marked the BatchPrediction as
- // INPROGRESS. StartedAt isn't available if the BatchPrediction is in the PENDING
- // state.
- StartedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The status of the BatchPrediction, which can be one of the following values:
- //
- // * PENDING - Amazon Machine Learning (Amazon ML) submitted a request to
- // generate batch predictions.
- // * INPROGRESS - The batch predictions are in progress.
- // * FAILED - The request to perform a batch prediction did not run to completion.
- // It is not usable.
- // * COMPLETED - The batch prediction process completed successfully.
- // * DELETED - The BatchPrediction is marked as deleted. It is not usable.
- Status *string `type:"string" enum:"EntityStatus"`
- // The number of total records that Amazon Machine Learning saw while processing
- // the BatchPrediction.
- TotalRecordCount *int64 `type:"long"`
- }
- // String returns the string representation
- func (s GetBatchPredictionOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s GetBatchPredictionOutput) GoString() string {
- return s.String()
- }
- type GetDataSourceInput struct {
- _ struct{} `type:"structure"`
- // The ID assigned to the DataSource at creation.
- //
- // DataSourceId is a required field
- DataSourceId *string `min:"1" type:"string" required:"true"`
- // Specifies whether the GetDataSource operation should return DataSourceSchema.
- //
- // If true, DataSourceSchema is returned.
- //
- // If false, DataSourceSchema is not returned.
- Verbose *bool `type:"boolean"`
- }
- // String returns the string representation
- func (s GetDataSourceInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s GetDataSourceInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *GetDataSourceInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "GetDataSourceInput"}
- if s.DataSourceId == nil {
- invalidParams.Add(request.NewErrParamRequired("DataSourceId"))
- }
- if s.DataSourceId != nil && len(*s.DataSourceId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("DataSourceId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a GetDataSource operation and describes a DataSource.
- type GetDataSourceOutput struct {
- _ struct{} `type:"structure"`
- // The parameter is true if statistics need to be generated from the observation
- // data.
- ComputeStatistics *bool `type:"boolean"`
- // The approximate CPU time in milliseconds that Amazon Machine Learning spent
- // processing the DataSource, normalized and scaled on computation resources.
- // ComputeTime is only available if the DataSource is in the COMPLETED state
- // and the ComputeStatistics is set to true.
- ComputeTime *int64 `type:"long"`
- // The time that the DataSource was created. The time is expressed in epoch
- // time.
- CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The AWS user account from which the DataSource was created. The account type
- // can be either an AWS root account or an AWS Identity and Access Management
- // (IAM) user account.
- CreatedByIamUser *string `type:"string"`
- // The location of the data file or directory in Amazon Simple Storage Service
- // (Amazon S3).
- DataLocationS3 *string `type:"string"`
- // A JSON string that represents the splitting and rearrangement requirement
- // used when this DataSource was created.
- DataRearrangement *string `type:"string"`
- // The total size of observations in the data files.
- DataSizeInBytes *int64 `type:"long"`
- // The ID assigned to the DataSource at creation. This value should be identical
- // to the value of the DataSourceId in the request.
- DataSourceId *string `min:"1" type:"string"`
- // The schema used by all of the data files of this DataSource.
- //
- // NoteThis parameter is provided as part of the verbose format.
- DataSourceSchema *string `type:"string"`
- // The epoch time when Amazon Machine Learning marked the DataSource as COMPLETED
- // or FAILED. FinishedAt is only available when the DataSource is in the COMPLETED
- // or FAILED state.
- FinishedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The time of the most recent edit to the DataSource. The time is expressed
- // in epoch time.
- LastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // A link to the file containing logs of CreateDataSourceFrom* operations.
- LogUri *string `type:"string"`
- // The user-supplied description of the most recent details about creating the
- // DataSource.
- Message *string `type:"string"`
- // A user-supplied name or description of the DataSource.
- Name *string `type:"string"`
- // The number of data files referenced by the DataSource.
- NumberOfFiles *int64 `type:"long"`
- // The datasource details that are specific to Amazon RDS.
- RDSMetadata *RDSMetadata `type:"structure"`
- // Describes the DataSource details specific to Amazon Redshift.
- RedshiftMetadata *RedshiftMetadata `type:"structure"`
- // The Amazon Resource Name (ARN) of an AWS IAM Role (http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html#roles-about-termsandconcepts),
- // such as the following: arn:aws:iam::account:role/rolename.
- RoleARN *string `min:"1" type:"string"`
- // The epoch time when Amazon Machine Learning marked the DataSource as INPROGRESS.
- // StartedAt isn't available if the DataSource is in the PENDING state.
- StartedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The current status of the DataSource. This element can have one of the following
- // values:
- //
- // * PENDING - Amazon ML submitted a request to create a DataSource.
- // * INPROGRESS - The creation process is underway.
- // * FAILED - The request to create a DataSource did not run to completion.
- // It is not usable.
- // * COMPLETED - The creation process completed successfully.
- // * DELETED - The DataSource is marked as deleted. It is not usable.
- Status *string `type:"string" enum:"EntityStatus"`
- }
- // String returns the string representation
- func (s GetDataSourceOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s GetDataSourceOutput) GoString() string {
- return s.String()
- }
- type GetEvaluationInput struct {
- _ struct{} `type:"structure"`
- // The ID of the Evaluation to retrieve. The evaluation of each MLModel is recorded
- // and cataloged. The ID provides the means to access the information.
- //
- // EvaluationId is a required field
- EvaluationId *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s GetEvaluationInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s GetEvaluationInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *GetEvaluationInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "GetEvaluationInput"}
- if s.EvaluationId == nil {
- invalidParams.Add(request.NewErrParamRequired("EvaluationId"))
- }
- if s.EvaluationId != nil && len(*s.EvaluationId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("EvaluationId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a GetEvaluation operation and describes an Evaluation.
- type GetEvaluationOutput struct {
- _ struct{} `type:"structure"`
- // The approximate CPU time in milliseconds that Amazon Machine Learning spent
- // processing the Evaluation, normalized and scaled on computation resources.
- // ComputeTime is only available if the Evaluation is in the COMPLETED state.
- ComputeTime *int64 `type:"long"`
- // The time that the Evaluation was created. The time is expressed in epoch
- // time.
- CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The AWS user account that invoked the evaluation. The account type can be
- // either an AWS root account or an AWS Identity and Access Management (IAM)
- // user account.
- CreatedByIamUser *string `type:"string"`
- // The DataSource used for this evaluation.
- EvaluationDataSourceId *string `min:"1" type:"string"`
- // The evaluation ID which is same as the EvaluationId in the request.
- EvaluationId *string `min:"1" type:"string"`
- // The epoch time when Amazon Machine Learning marked the Evaluation as COMPLETED
- // or FAILED. FinishedAt is only available when the Evaluation is in the COMPLETED
- // or FAILED state.
- FinishedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The location of the data file or directory in Amazon Simple Storage Service
- // (Amazon S3).
- InputDataLocationS3 *string `type:"string"`
- // The time of the most recent edit to the Evaluation. The time is expressed
- // in epoch time.
- LastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // A link to the file that contains logs of the CreateEvaluation operation.
- LogUri *string `type:"string"`
- // The ID of the MLModel that was the focus of the evaluation.
- MLModelId *string `min:"1" type:"string"`
- // A description of the most recent details about evaluating the MLModel.
- Message *string `type:"string"`
- // A user-supplied name or description of the Evaluation.
- Name *string `type:"string"`
- // Measurements of how well the MLModel performed using observations referenced
- // by the DataSource. One of the following metric is returned based on the type
- // of the MLModel:
- //
- // * BinaryAUC: A binary MLModel uses the Area Under the Curve (AUC) technique
- // to measure performance.
- //
- // * RegressionRMSE: A regression MLModel uses the Root Mean Square Error
- // (RMSE) technique to measure performance. RMSE measures the difference
- // between predicted and actual values for a single variable.
- //
- // * MulticlassAvgFScore: A multiclass MLModel uses the F1 score technique
- // to measure performance.
- //
- // For more information about performance metrics, please see the Amazon Machine
- // Learning Developer Guide (http://docs.aws.amazon.com/machine-learning/latest/dg).
- PerformanceMetrics *PerformanceMetrics `type:"structure"`
- // The epoch time when Amazon Machine Learning marked the Evaluation as INPROGRESS.
- // StartedAt isn't available if the Evaluation is in the PENDING state.
- StartedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The status of the evaluation. This element can have one of the following
- // values:
- //
- // * PENDING - Amazon Machine Language (Amazon ML) submitted a request to
- // evaluate an MLModel.
- // * INPROGRESS - The evaluation is underway.
- // * FAILED - The request to evaluate an MLModel did not run to completion.
- // It is not usable.
- // * COMPLETED - The evaluation process completed successfully.
- // * DELETED - The Evaluation is marked as deleted. It is not usable.
- Status *string `type:"string" enum:"EntityStatus"`
- }
- // String returns the string representation
- func (s GetEvaluationOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s GetEvaluationOutput) GoString() string {
- return s.String()
- }
- type GetMLModelInput struct {
- _ struct{} `type:"structure"`
- // The ID assigned to the MLModel at creation.
- //
- // MLModelId is a required field
- MLModelId *string `min:"1" type:"string" required:"true"`
- // Specifies whether the GetMLModel operation should return Recipe.
- //
- // If true, Recipe is returned.
- //
- // If false, Recipe is not returned.
- Verbose *bool `type:"boolean"`
- }
- // String returns the string representation
- func (s GetMLModelInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s GetMLModelInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *GetMLModelInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "GetMLModelInput"}
- if s.MLModelId == nil {
- invalidParams.Add(request.NewErrParamRequired("MLModelId"))
- }
- if s.MLModelId != nil && len(*s.MLModelId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a GetMLModel operation, and provides detailed information
- // about a MLModel.
- type GetMLModelOutput struct {
- _ struct{} `type:"structure"`
- // The approximate CPU time in milliseconds that Amazon Machine Learning spent
- // processing the MLModel, normalized and scaled on computation resources. ComputeTime
- // is only available if the MLModel is in the COMPLETED state.
- ComputeTime *int64 `type:"long"`
- // The time that the MLModel was created. The time is expressed in epoch time.
- CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The AWS user account from which the MLModel was created. The account type
- // can be either an AWS root account or an AWS Identity and Access Management
- // (IAM) user account.
- CreatedByIamUser *string `type:"string"`
- // The current endpoint of the MLModel
- EndpointInfo *RealtimeEndpointInfo `type:"structure"`
- // The epoch time when Amazon Machine Learning marked the MLModel as COMPLETED
- // or FAILED. FinishedAt is only available when the MLModel is in the COMPLETED
- // or FAILED state.
- FinishedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The location of the data file or directory in Amazon Simple Storage Service
- // (Amazon S3).
- InputDataLocationS3 *string `type:"string"`
- // The time of the most recent edit to the MLModel. The time is expressed in
- // epoch time.
- LastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // A link to the file that contains logs of the CreateMLModel operation.
- LogUri *string `type:"string"`
- // The MLModel ID, which is same as the MLModelId in the request.
- MLModelId *string `min:"1" type:"string"`
- // Identifies the MLModel category. The following are the available types:
- //
- // * REGRESSION -- Produces a numeric result. For example, "What price should
- // a house be listed at?"
- // * BINARY -- Produces one of two possible results. For example, "Is this
- // an e-commerce website?"
- // * MULTICLASS -- Produces one of several possible results. For example,
- // "Is this a HIGH, LOW or MEDIUM risk trade?"
- MLModelType *string `type:"string" enum:"MLModelType"`
- // A description of the most recent details about accessing the MLModel.
- Message *string `type:"string"`
- // A user-supplied name or description of the MLModel.
- Name *string `type:"string"`
- // The recipe to use when training the MLModel. The Recipe provides detailed
- // information about the observation data to use during training, and manipulations
- // to perform on the observation data during training.
- //
- // NoteThis parameter is provided as part of the verbose format.
- Recipe *string `type:"string"`
- // The schema used by all of the data files referenced by the DataSource.
- //
- // NoteThis parameter is provided as part of the verbose format.
- Schema *string `type:"string"`
- // The scoring threshold is used in binary classification MLModelmodels. It
- // marks the boundary between a positive prediction and a negative prediction.
- //
- // Output values greater than or equal to the threshold receive a positive result
- // from the MLModel, such as true. Output values less than the threshold receive
- // a negative response from the MLModel, such as false.
- ScoreThreshold *float64 `type:"float"`
- // The time of the most recent edit to the ScoreThreshold. The time is expressed
- // in epoch time.
- ScoreThresholdLastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // Long integer type that is a 64-bit signed number.
- SizeInBytes *int64 `type:"long"`
- // The epoch time when Amazon Machine Learning marked the MLModel as INPROGRESS.
- // StartedAt isn't available if the MLModel is in the PENDING state.
- StartedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The current status of the MLModel. This element can have one of the following
- // values:
- //
- // * PENDING - Amazon Machine Learning (Amazon ML) submitted a request to
- // describe a MLModel.
- // * INPROGRESS - The request is processing.
- // * FAILED - The request did not run to completion. The ML model isn't usable.
- //
- // * COMPLETED - The request completed successfully.
- // * DELETED - The MLModel is marked as deleted. It isn't usable.
- Status *string `type:"string" enum:"EntityStatus"`
- // The ID of the training DataSource.
- TrainingDataSourceId *string `min:"1" type:"string"`
- // A list of the training parameters in the MLModel. The list is implemented
- // as a map of key-value pairs.
- //
- // The following is the current set of training parameters:
- //
- // * sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending
- // on the input data, the size of the model might affect its performance.
- //
- // The value is an integer that ranges from 100000 to 2147483648. The default
- // value is 33554432.
- //
- // * sgd.maxPasses - The number of times that the training process traverses
- // the observations to build the MLModel. The value is an integer that ranges
- // from 1 to 10000. The default value is 10.
- //
- // * sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling
- // data improves a model's ability to find the optimal solution for a variety
- // of data types. The valid values are auto and none. The default value is
- // none. We strongly recommend that you shuffle your data.
- //
- // * sgd.l1RegularizationAmount - The coefficient regularization L1 norm.
- // It controls overfitting the data by penalizing large coefficients. This
- // tends to drive coefficients to zero, resulting in a sparse feature set.
- // If you use this parameter, start by specifying a small value, such as
- // 1.0E-08.
- //
- // The value is a double that ranges from 0 to MAX_DOUBLE. The default is to
- // not use L1 normalization. This parameter can't be used when L2 is specified.
- // Use this parameter sparingly.
- //
- // * sgd.l2RegularizationAmount - The coefficient regularization L2 norm.
- // It controls overfitting the data by penalizing large coefficients. This
- // tends to drive coefficients to small, nonzero values. If you use this
- // parameter, start by specifying a small value, such as 1.0E-08.
- //
- // The value is a double that ranges from 0 to MAX_DOUBLE. The default is to
- // not use L2 normalization. This parameter can't be used when L1 is specified.
- // Use this parameter sparingly.
- TrainingParameters map[string]*string `type:"map"`
- }
- // String returns the string representation
- func (s GetMLModelOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s GetMLModelOutput) GoString() string {
- return s.String()
- }
- // Represents the output of a GetMLModel operation.
- //
- // The content consists of the detailed metadata and the current status of the
- // MLModel.
- type MLModel struct {
- _ struct{} `type:"structure"`
- // The algorithm used to train the MLModel. The following algorithm is supported:
- //
- // * SGD -- Stochastic gradient descent. The goal of SGD is to minimize the
- // gradient of the loss function.
- Algorithm *string `type:"string" enum:"Algorithm"`
- // Long integer type that is a 64-bit signed number.
- ComputeTime *int64 `type:"long"`
- // The time that the MLModel was created. The time is expressed in epoch time.
- CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The AWS user account from which the MLModel was created. The account type
- // can be either an AWS root account or an AWS Identity and Access Management
- // (IAM) user account.
- CreatedByIamUser *string `type:"string"`
- // The current endpoint of the MLModel.
- EndpointInfo *RealtimeEndpointInfo `type:"structure"`
- // A timestamp represented in epoch time.
- FinishedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The location of the data file or directory in Amazon Simple Storage Service
- // (Amazon S3).
- InputDataLocationS3 *string `type:"string"`
- // The time of the most recent edit to the MLModel. The time is expressed in
- // epoch time.
- LastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The ID assigned to the MLModel at creation.
- MLModelId *string `min:"1" type:"string"`
- // Identifies the MLModel category. The following are the available types:
- //
- // * REGRESSION - Produces a numeric result. For example, "What price should
- // a house be listed at?"
- // * BINARY - Produces one of two possible results. For example, "Is this
- // a child-friendly web site?".
- // * MULTICLASS - Produces one of several possible results. For example,
- // "Is this a HIGH-, LOW-, or MEDIUM-risk trade?".
- MLModelType *string `type:"string" enum:"MLModelType"`
- // A description of the most recent details about accessing the MLModel.
- Message *string `type:"string"`
- // A user-supplied name or description of the MLModel.
- Name *string `type:"string"`
- ScoreThreshold *float64 `type:"float"`
- // The time of the most recent edit to the ScoreThreshold. The time is expressed
- // in epoch time.
- ScoreThresholdLastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // Long integer type that is a 64-bit signed number.
- SizeInBytes *int64 `type:"long"`
- // A timestamp represented in epoch time.
- StartedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The current status of an MLModel. This element can have one of the following
- // values:
- //
- // * PENDING - Amazon Machine Learning (Amazon ML) submitted a request to
- // create an MLModel.
- // * INPROGRESS - The creation process is underway.
- // * FAILED - The request to create an MLModel didn't run to completion.
- // The model isn't usable.
- // * COMPLETED - The creation process completed successfully.
- // * DELETED - The MLModel is marked as deleted. It isn't usable.
- Status *string `type:"string" enum:"EntityStatus"`
- // The ID of the training DataSource. The CreateMLModel operation uses the TrainingDataSourceId.
- TrainingDataSourceId *string `min:"1" type:"string"`
- // A list of the training parameters in the MLModel. The list is implemented
- // as a map of key-value pairs.
- //
- // The following is the current set of training parameters:
- //
- // * sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending
- // on the input data, the size of the model might affect its performance.
- //
- // The value is an integer that ranges from 100000 to 2147483648. The default
- // value is 33554432.
- //
- // * sgd.maxPasses - The number of times that the training process traverses
- // the observations to build the MLModel. The value is an integer that ranges
- // from 1 to 10000. The default value is 10.
- //
- // * sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling
- // the data improves a model's ability to find the optimal solution for a
- // variety of data types. The valid values are auto and none. The default
- // value is none.
- //
- // * sgd.l1RegularizationAmount - The coefficient regularization L1 norm,
- // which controls overfitting the data by penalizing large coefficients.
- // This parameter tends to drive coefficients to zero, resulting in sparse
- // feature set. If you use this parameter, start by specifying a small value,
- // such as 1.0E-08.
- //
- // The value is a double that ranges from 0 to MAX_DOUBLE. The default is to
- // not use L1 normalization. This parameter can't be used when L2 is specified.
- // Use this parameter sparingly.
- //
- // * sgd.l2RegularizationAmount - The coefficient regularization L2 norm,
- // which controls overfitting the data by penalizing large coefficients.
- // This tends to drive coefficients to small, nonzero values. If you use
- // this parameter, start by specifying a small value, such as 1.0E-08.
- //
- // The value is a double that ranges from 0 to MAX_DOUBLE. The default is to
- // not use L2 normalization. This parameter can't be used when L1 is specified.
- // Use this parameter sparingly.
- TrainingParameters map[string]*string `type:"map"`
- }
- // String returns the string representation
- func (s MLModel) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s MLModel) GoString() string {
- return s.String()
- }
- // Measurements of how well the MLModel performed on known observations. One
- // of the following metrics is returned, based on the type of the MLModel:
- //
- // * BinaryAUC: The binary MLModel uses the Area Under the Curve (AUC) technique
- // to measure performance.
- //
- // * RegressionRMSE: The regression MLModel uses the Root Mean Square Error
- // (RMSE) technique to measure performance. RMSE measures the difference
- // between predicted and actual values for a single variable.
- //
- // * MulticlassAvgFScore: The multiclass MLModel uses the F1 score technique
- // to measure performance.
- //
- // For more information about performance metrics, please see the Amazon Machine
- // Learning Developer Guide (http://docs.aws.amazon.com/machine-learning/latest/dg).
- type PerformanceMetrics struct {
- _ struct{} `type:"structure"`
- Properties map[string]*string `type:"map"`
- }
- // String returns the string representation
- func (s PerformanceMetrics) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s PerformanceMetrics) GoString() string {
- return s.String()
- }
- type PredictInput struct {
- _ struct{} `type:"structure"`
- // A unique identifier of the MLModel.
- //
- // MLModelId is a required field
- MLModelId *string `min:"1" type:"string" required:"true"`
- // PredictEndpoint is a required field
- PredictEndpoint *string `type:"string" required:"true"`
- // A map of variable name-value pairs that represent an observation.
- //
- // Record is a required field
- Record map[string]*string `type:"map" required:"true"`
- }
- // String returns the string representation
- func (s PredictInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s PredictInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *PredictInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "PredictInput"}
- if s.MLModelId == nil {
- invalidParams.Add(request.NewErrParamRequired("MLModelId"))
- }
- if s.MLModelId != nil && len(*s.MLModelId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1))
- }
- if s.PredictEndpoint == nil {
- invalidParams.Add(request.NewErrParamRequired("PredictEndpoint"))
- }
- if s.Record == nil {
- invalidParams.Add(request.NewErrParamRequired("Record"))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- type PredictOutput struct {
- _ struct{} `type:"structure"`
- // The output from a Predict operation:
- //
- // * Details - Contains the following attributes: DetailsAttributes.PREDICTIVE_MODEL_TYPE
- // - REGRESSION | BINARY | MULTICLASSDetailsAttributes.ALGORITHM - SGD
- //
- // * PredictedLabel - Present for either a BINARY or MULTICLASSMLModel request.
- //
- //
- // * PredictedScores - Contains the raw classification score corresponding
- // to each label.
- //
- // * PredictedValue - Present for a REGRESSIONMLModel request.
- Prediction *Prediction `type:"structure"`
- }
- // String returns the string representation
- func (s PredictOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s PredictOutput) GoString() string {
- return s.String()
- }
- // The output from a Predict operation:
- //
- // * Details - Contains the following attributes: DetailsAttributes.PREDICTIVE_MODEL_TYPE
- // - REGRESSION | BINARY | MULTICLASSDetailsAttributes.ALGORITHM - SGD
- //
- // * PredictedLabel - Present for either a BINARY or MULTICLASSMLModel request.
- //
- //
- // * PredictedScores - Contains the raw classification score corresponding
- // to each label.
- //
- // * PredictedValue - Present for a REGRESSIONMLModel request.
- type Prediction struct {
- _ struct{} `type:"structure"`
- // Provides any additional details regarding the prediction.
- Details map[string]*string `locationName:"details" type:"map"`
- // The prediction label for either a BINARY or MULTICLASSMLModel.
- PredictedLabel *string `locationName:"predictedLabel" min:"1" type:"string"`
- // Provides the raw classification score corresponding to each label.
- PredictedScores map[string]*float64 `locationName:"predictedScores" type:"map"`
- // The prediction value for REGRESSIONMLModel
- PredictedValue *float64 `locationName:"predictedValue" type:"float"`
- }
- // String returns the string representation
- func (s Prediction) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s Prediction) GoString() string {
- return s.String()
- }
- // The data specification of an Amazon Relational Database Service (Amazon RDS)
- // DataSource.
- type RDSDataSpec struct {
- _ struct{} `type:"structure"`
- // A JSON string that represents the splitting and rearrangement processing
- // to be applied to a DataSource. If the DataRearrangement parameter is not
- // provided, all of the input data is used to create the Datasource.
- //
- // There are multiple parameters that control what data is used to create a
- // datasource:
- //
- // * percentBegin
- //
- // Use percentBegin to indicate the beginning of the range of the data used
- // to create the Datasource. If you do not include percentBegin and percentEnd,
- // Amazon ML includes all of the data when creating the datasource.
- //
- // * percentEnd
- //
- // Use percentEnd to indicate the end of the range of the data used to create
- // the Datasource. If you do not include percentBegin and percentEnd, Amazon
- // ML includes all of the data when creating the datasource.
- //
- // * complement
- //
- // The complement parameter instructs Amazon ML to use the data that is not
- // included in the range of percentBegin to percentEnd to create a datasource.
- // The complement parameter is useful if you need to create complementary
- // datasources for training and evaluation. To create a complementary datasource,
- // use the same values for percentBegin and percentEnd, along with the complement
- // parameter.
- //
- // For example, the following two datasources do not share any data, and can
- // be used to train and evaluate a model. The first datasource has 25 percent
- // of the data, and the second one has 75 percent of the data.
- //
- // Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}
- //
- // Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25,
- // "complement":"true"}}
- //
- // * strategy
- //
- // To change how Amazon ML splits the data for a datasource, use the strategy
- // parameter.
- //
- // The default value for the strategy parameter is sequential, meaning that
- // Amazon ML takes all of the data records between the percentBegin and percentEnd
- // parameters for the datasource, in the order that the records appear in
- // the input data.
- //
- // The following two DataRearrangement lines are examples of sequentially ordered
- // training and evaluation datasources:
- //
- // Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
- // "strategy":"sequential"}}
- //
- // Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100,
- // "strategy":"sequential", "complement":"true"}}
- //
- // To randomly split the input data into the proportions indicated by the percentBegin
- // and percentEnd parameters, set the strategy parameter to random and provide
- // a string that is used as the seed value for the random data splitting
- // (for example, you can use the S3 path to your data as the random seed
- // string). If you choose the random split strategy, Amazon ML assigns each
- // row of data a pseudo-random number between 0 and 100, and then selects
- // the rows that have an assigned number between percentBegin and percentEnd.
- // Pseudo-random numbers are assigned using both the input seed string value
- // and the byte offset as a seed, so changing the data results in a different
- // split. Any existing ordering is preserved. The random splitting strategy
- // ensures that variables in the training and evaluation data are distributed
- // similarly. It is useful in the cases where the input data may have an
- // implicit sort order, which would otherwise result in training and evaluation
- // datasources containing non-similar data records.
- //
- // The following two DataRearrangement lines are examples of non-sequentially
- // ordered training and evaluation datasources:
- //
- // Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
- // "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}
- //
- // Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100,
- // "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}
- DataRearrangement *string `type:"string"`
- // A JSON string that represents the schema for an Amazon RDS DataSource. The
- // DataSchema defines the structure of the observation data in the data file(s)
- // referenced in the DataSource.
- //
- // A DataSchema is not required if you specify a DataSchemaUri
- //
- // Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames
- // have an array of key-value pairs for their value. Use the following format
- // to define your DataSchema.
- //
- // { "version": "1.0",
- //
- // "recordAnnotationFieldName": "F1",
- //
- // "recordWeightFieldName": "F2",
- //
- // "targetFieldName": "F3",
- //
- // "dataFormat": "CSV",
- //
- // "dataFileContainsHeader": true,
- //
- // "attributes": [
- //
- // { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType":
- // "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName":
- // "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL"
- // }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType":
- // "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE"
- // } ],
- //
- // "excludedVariableNames": [ "F6" ] }
- DataSchema *string `type:"string"`
- // The Amazon S3 location of the DataSchema.
- DataSchemaUri *string `type:"string"`
- // The AWS Identity and Access Management (IAM) credentials that are used connect
- // to the Amazon RDS database.
- //
- // DatabaseCredentials is a required field
- DatabaseCredentials *RDSDatabaseCredentials `type:"structure" required:"true"`
- // Describes the DatabaseName and InstanceIdentifier of an Amazon RDS database.
- //
- // DatabaseInformation is a required field
- DatabaseInformation *RDSDatabase `type:"structure" required:"true"`
- // The role (DataPipelineDefaultResourceRole) assumed by an Amazon Elastic Compute
- // Cloud (Amazon EC2) instance to carry out the copy operation from Amazon RDS
- // to an Amazon S3 task. For more information, see Role templates (http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html)
- // for data pipelines.
- //
- // ResourceRole is a required field
- ResourceRole *string `min:"1" type:"string" required:"true"`
- // The Amazon S3 location for staging Amazon RDS data. The data retrieved from
- // Amazon RDS using SelectSqlQuery is stored in this location.
- //
- // S3StagingLocation is a required field
- S3StagingLocation *string `type:"string" required:"true"`
- // The security group IDs to be used to access a VPC-based RDS DB instance.
- // Ensure that there are appropriate ingress rules set up to allow access to
- // the RDS DB instance. This attribute is used by Data Pipeline to carry out
- // the copy operation from Amazon RDS to an Amazon S3 task.
- //
- // SecurityGroupIds is a required field
- SecurityGroupIds []*string `type:"list" required:"true"`
- // The query that is used to retrieve the observation data for the DataSource.
- //
- // SelectSqlQuery is a required field
- SelectSqlQuery *string `min:"1" type:"string" required:"true"`
- // The role (DataPipelineDefaultRole) assumed by AWS Data Pipeline service to
- // monitor the progress of the copy task from Amazon RDS to Amazon S3. For more
- // information, see Role templates (http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html)
- // for data pipelines.
- //
- // ServiceRole is a required field
- ServiceRole *string `min:"1" type:"string" required:"true"`
- // The subnet ID to be used to access a VPC-based RDS DB instance. This attribute
- // is used by Data Pipeline to carry out the copy task from Amazon RDS to Amazon
- // S3.
- //
- // SubnetId is a required field
- SubnetId *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s RDSDataSpec) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s RDSDataSpec) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *RDSDataSpec) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "RDSDataSpec"}
- if s.DatabaseCredentials == nil {
- invalidParams.Add(request.NewErrParamRequired("DatabaseCredentials"))
- }
- if s.DatabaseInformation == nil {
- invalidParams.Add(request.NewErrParamRequired("DatabaseInformation"))
- }
- if s.ResourceRole == nil {
- invalidParams.Add(request.NewErrParamRequired("ResourceRole"))
- }
- if s.ResourceRole != nil && len(*s.ResourceRole) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("ResourceRole", 1))
- }
- if s.S3StagingLocation == nil {
- invalidParams.Add(request.NewErrParamRequired("S3StagingLocation"))
- }
- if s.SecurityGroupIds == nil {
- invalidParams.Add(request.NewErrParamRequired("SecurityGroupIds"))
- }
- if s.SelectSqlQuery == nil {
- invalidParams.Add(request.NewErrParamRequired("SelectSqlQuery"))
- }
- if s.SelectSqlQuery != nil && len(*s.SelectSqlQuery) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("SelectSqlQuery", 1))
- }
- if s.ServiceRole == nil {
- invalidParams.Add(request.NewErrParamRequired("ServiceRole"))
- }
- if s.ServiceRole != nil && len(*s.ServiceRole) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("ServiceRole", 1))
- }
- if s.SubnetId == nil {
- invalidParams.Add(request.NewErrParamRequired("SubnetId"))
- }
- if s.SubnetId != nil && len(*s.SubnetId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("SubnetId", 1))
- }
- if s.DatabaseCredentials != nil {
- if err := s.DatabaseCredentials.Validate(); err != nil {
- invalidParams.AddNested("DatabaseCredentials", err.(request.ErrInvalidParams))
- }
- }
- if s.DatabaseInformation != nil {
- if err := s.DatabaseInformation.Validate(); err != nil {
- invalidParams.AddNested("DatabaseInformation", err.(request.ErrInvalidParams))
- }
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // The database details of an Amazon RDS database.
- type RDSDatabase struct {
- _ struct{} `type:"structure"`
- // The name of a database hosted on an RDS DB instance.
- //
- // DatabaseName is a required field
- DatabaseName *string `min:"1" type:"string" required:"true"`
- // The ID of an RDS DB instance.
- //
- // InstanceIdentifier is a required field
- InstanceIdentifier *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s RDSDatabase) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s RDSDatabase) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *RDSDatabase) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "RDSDatabase"}
- if s.DatabaseName == nil {
- invalidParams.Add(request.NewErrParamRequired("DatabaseName"))
- }
- if s.DatabaseName != nil && len(*s.DatabaseName) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("DatabaseName", 1))
- }
- if s.InstanceIdentifier == nil {
- invalidParams.Add(request.NewErrParamRequired("InstanceIdentifier"))
- }
- if s.InstanceIdentifier != nil && len(*s.InstanceIdentifier) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("InstanceIdentifier", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // The database credentials to connect to a database on an RDS DB instance.
- type RDSDatabaseCredentials struct {
- _ struct{} `type:"structure"`
- // The password to be used by Amazon ML to connect to a database on an RDS DB
- // instance. The password should have sufficient permissions to execute the
- // RDSSelectQuery query.
- //
- // Password is a required field
- Password *string `min:"8" type:"string" required:"true"`
- // The username to be used by Amazon ML to connect to database on an Amazon
- // RDS instance. The username should have sufficient permissions to execute
- // an RDSSelectSqlQuery query.
- //
- // Username is a required field
- Username *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s RDSDatabaseCredentials) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s RDSDatabaseCredentials) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *RDSDatabaseCredentials) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "RDSDatabaseCredentials"}
- if s.Password == nil {
- invalidParams.Add(request.NewErrParamRequired("Password"))
- }
- if s.Password != nil && len(*s.Password) < 8 {
- invalidParams.Add(request.NewErrParamMinLen("Password", 8))
- }
- if s.Username == nil {
- invalidParams.Add(request.NewErrParamRequired("Username"))
- }
- if s.Username != nil && len(*s.Username) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("Username", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // The datasource details that are specific to Amazon RDS.
- type RDSMetadata struct {
- _ struct{} `type:"structure"`
- // The ID of the Data Pipeline instance that is used to carry to copy data from
- // Amazon RDS to Amazon S3. You can use the ID to find details about the instance
- // in the Data Pipeline console.
- DataPipelineId *string `min:"1" type:"string"`
- // The database details required to connect to an Amazon RDS.
- Database *RDSDatabase `type:"structure"`
- // The username to be used by Amazon ML to connect to database on an Amazon
- // RDS instance. The username should have sufficient permissions to execute
- // an RDSSelectSqlQuery query.
- DatabaseUserName *string `min:"1" type:"string"`
- // The role (DataPipelineDefaultResourceRole) assumed by an Amazon EC2 instance
- // to carry out the copy task from Amazon RDS to Amazon S3. For more information,
- // see Role templates (http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html)
- // for data pipelines.
- ResourceRole *string `min:"1" type:"string"`
- // The SQL query that is supplied during CreateDataSourceFromRDS. Returns only
- // if Verbose is true in GetDataSourceInput.
- SelectSqlQuery *string `min:"1" type:"string"`
- // The role (DataPipelineDefaultRole) assumed by the Data Pipeline service to
- // monitor the progress of the copy task from Amazon RDS to Amazon S3. For more
- // information, see Role templates (http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html)
- // for data pipelines.
- ServiceRole *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s RDSMetadata) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s RDSMetadata) GoString() string {
- return s.String()
- }
- // Describes the real-time endpoint information for an MLModel.
- type RealtimeEndpointInfo struct {
- _ struct{} `type:"structure"`
- // The time that the request to create the real-time endpoint for the MLModel
- // was received. The time is expressed in epoch time.
- CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The current status of the real-time endpoint for the MLModel. This element
- // can have one of the following values:
- //
- // * NONE - Endpoint does not exist or was previously deleted.
- // * READY - Endpoint is ready to be used for real-time predictions.
- // * UPDATING - Updating/creating the endpoint.
- EndpointStatus *string `type:"string" enum:"RealtimeEndpointStatus"`
- // The URI that specifies where to send real-time prediction requests for the
- // MLModel.
- //
- // NoteThe application must wait until the real-time endpoint is ready before
- // using this URI.
- EndpointUrl *string `type:"string"`
- // The maximum processing rate for the real-time endpoint for MLModel, measured
- // in incoming requests per second.
- PeakRequestsPerSecond *int64 `type:"integer"`
- }
- // String returns the string representation
- func (s RealtimeEndpointInfo) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s RealtimeEndpointInfo) GoString() string {
- return s.String()
- }
- // Describes the data specification of an Amazon Redshift DataSource.
- type RedshiftDataSpec struct {
- _ struct{} `type:"structure"`
- // A JSON string that represents the splitting and rearrangement processing
- // to be applied to a DataSource. If the DataRearrangement parameter is not
- // provided, all of the input data is used to create the Datasource.
- //
- // There are multiple parameters that control what data is used to create a
- // datasource:
- //
- // * percentBegin
- //
- // Use percentBegin to indicate the beginning of the range of the data used
- // to create the Datasource. If you do not include percentBegin and percentEnd,
- // Amazon ML includes all of the data when creating the datasource.
- //
- // * percentEnd
- //
- // Use percentEnd to indicate the end of the range of the data used to create
- // the Datasource. If you do not include percentBegin and percentEnd, Amazon
- // ML includes all of the data when creating the datasource.
- //
- // * complement
- //
- // The complement parameter instructs Amazon ML to use the data that is not
- // included in the range of percentBegin to percentEnd to create a datasource.
- // The complement parameter is useful if you need to create complementary
- // datasources for training and evaluation. To create a complementary datasource,
- // use the same values for percentBegin and percentEnd, along with the complement
- // parameter.
- //
- // For example, the following two datasources do not share any data, and can
- // be used to train and evaluate a model. The first datasource has 25 percent
- // of the data, and the second one has 75 percent of the data.
- //
- // Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}
- //
- // Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25,
- // "complement":"true"}}
- //
- // * strategy
- //
- // To change how Amazon ML splits the data for a datasource, use the strategy
- // parameter.
- //
- // The default value for the strategy parameter is sequential, meaning that
- // Amazon ML takes all of the data records between the percentBegin and percentEnd
- // parameters for the datasource, in the order that the records appear in
- // the input data.
- //
- // The following two DataRearrangement lines are examples of sequentially ordered
- // training and evaluation datasources:
- //
- // Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
- // "strategy":"sequential"}}
- //
- // Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100,
- // "strategy":"sequential", "complement":"true"}}
- //
- // To randomly split the input data into the proportions indicated by the percentBegin
- // and percentEnd parameters, set the strategy parameter to random and provide
- // a string that is used as the seed value for the random data splitting
- // (for example, you can use the S3 path to your data as the random seed
- // string). If you choose the random split strategy, Amazon ML assigns each
- // row of data a pseudo-random number between 0 and 100, and then selects
- // the rows that have an assigned number between percentBegin and percentEnd.
- // Pseudo-random numbers are assigned using both the input seed string value
- // and the byte offset as a seed, so changing the data results in a different
- // split. Any existing ordering is preserved. The random splitting strategy
- // ensures that variables in the training and evaluation data are distributed
- // similarly. It is useful in the cases where the input data may have an
- // implicit sort order, which would otherwise result in training and evaluation
- // datasources containing non-similar data records.
- //
- // The following two DataRearrangement lines are examples of non-sequentially
- // ordered training and evaluation datasources:
- //
- // Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
- // "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}
- //
- // Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100,
- // "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}
- DataRearrangement *string `type:"string"`
- // A JSON string that represents the schema for an Amazon Redshift DataSource.
- // The DataSchema defines the structure of the observation data in the data
- // file(s) referenced in the DataSource.
- //
- // A DataSchema is not required if you specify a DataSchemaUri.
- //
- // Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames
- // have an array of key-value pairs for their value. Use the following format
- // to define your DataSchema.
- //
- // { "version": "1.0",
- //
- // "recordAnnotationFieldName": "F1",
- //
- // "recordWeightFieldName": "F2",
- //
- // "targetFieldName": "F3",
- //
- // "dataFormat": "CSV",
- //
- // "dataFileContainsHeader": true,
- //
- // "attributes": [
- //
- // { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType":
- // "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName":
- // "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL"
- // }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType":
- // "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE"
- // } ],
- //
- // "excludedVariableNames": [ "F6" ] }
- DataSchema *string `type:"string"`
- // Describes the schema location for an Amazon Redshift DataSource.
- DataSchemaUri *string `type:"string"`
- // Describes AWS Identity and Access Management (IAM) credentials that are used
- // connect to the Amazon Redshift database.
- //
- // DatabaseCredentials is a required field
- DatabaseCredentials *RedshiftDatabaseCredentials `type:"structure" required:"true"`
- // Describes the DatabaseName and ClusterIdentifier for an Amazon Redshift DataSource.
- //
- // DatabaseInformation is a required field
- DatabaseInformation *RedshiftDatabase `type:"structure" required:"true"`
- // Describes an Amazon S3 location to store the result set of the SelectSqlQuery
- // query.
- //
- // S3StagingLocation is a required field
- S3StagingLocation *string `type:"string" required:"true"`
- // Describes the SQL Query to execute on an Amazon Redshift database for an
- // Amazon Redshift DataSource.
- //
- // SelectSqlQuery is a required field
- SelectSqlQuery *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s RedshiftDataSpec) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s RedshiftDataSpec) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *RedshiftDataSpec) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "RedshiftDataSpec"}
- if s.DatabaseCredentials == nil {
- invalidParams.Add(request.NewErrParamRequired("DatabaseCredentials"))
- }
- if s.DatabaseInformation == nil {
- invalidParams.Add(request.NewErrParamRequired("DatabaseInformation"))
- }
- if s.S3StagingLocation == nil {
- invalidParams.Add(request.NewErrParamRequired("S3StagingLocation"))
- }
- if s.SelectSqlQuery == nil {
- invalidParams.Add(request.NewErrParamRequired("SelectSqlQuery"))
- }
- if s.SelectSqlQuery != nil && len(*s.SelectSqlQuery) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("SelectSqlQuery", 1))
- }
- if s.DatabaseCredentials != nil {
- if err := s.DatabaseCredentials.Validate(); err != nil {
- invalidParams.AddNested("DatabaseCredentials", err.(request.ErrInvalidParams))
- }
- }
- if s.DatabaseInformation != nil {
- if err := s.DatabaseInformation.Validate(); err != nil {
- invalidParams.AddNested("DatabaseInformation", err.(request.ErrInvalidParams))
- }
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Describes the database details required to connect to an Amazon Redshift
- // database.
- type RedshiftDatabase struct {
- _ struct{} `type:"structure"`
- // The ID of an Amazon Redshift cluster.
- //
- // ClusterIdentifier is a required field
- ClusterIdentifier *string `min:"1" type:"string" required:"true"`
- // The name of a database hosted on an Amazon Redshift cluster.
- //
- // DatabaseName is a required field
- DatabaseName *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s RedshiftDatabase) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s RedshiftDatabase) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *RedshiftDatabase) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "RedshiftDatabase"}
- if s.ClusterIdentifier == nil {
- invalidParams.Add(request.NewErrParamRequired("ClusterIdentifier"))
- }
- if s.ClusterIdentifier != nil && len(*s.ClusterIdentifier) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("ClusterIdentifier", 1))
- }
- if s.DatabaseName == nil {
- invalidParams.Add(request.NewErrParamRequired("DatabaseName"))
- }
- if s.DatabaseName != nil && len(*s.DatabaseName) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("DatabaseName", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Describes the database credentials for connecting to a database on an Amazon
- // Redshift cluster.
- type RedshiftDatabaseCredentials struct {
- _ struct{} `type:"structure"`
- // A password to be used by Amazon ML to connect to a database on an Amazon
- // Redshift cluster. The password should have sufficient permissions to execute
- // a RedshiftSelectSqlQuery query. The password should be valid for an Amazon
- // Redshift USER (http://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html).
- //
- // Password is a required field
- Password *string `min:"8" type:"string" required:"true"`
- // A username to be used by Amazon Machine Learning (Amazon ML)to connect to
- // a database on an Amazon Redshift cluster. The username should have sufficient
- // permissions to execute the RedshiftSelectSqlQuery query. The username should
- // be valid for an Amazon Redshift USER (http://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html).
- //
- // Username is a required field
- Username *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s RedshiftDatabaseCredentials) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s RedshiftDatabaseCredentials) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *RedshiftDatabaseCredentials) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "RedshiftDatabaseCredentials"}
- if s.Password == nil {
- invalidParams.Add(request.NewErrParamRequired("Password"))
- }
- if s.Password != nil && len(*s.Password) < 8 {
- invalidParams.Add(request.NewErrParamMinLen("Password", 8))
- }
- if s.Username == nil {
- invalidParams.Add(request.NewErrParamRequired("Username"))
- }
- if s.Username != nil && len(*s.Username) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("Username", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Describes the DataSource details specific to Amazon Redshift.
- type RedshiftMetadata struct {
- _ struct{} `type:"structure"`
- // A username to be used by Amazon Machine Learning (Amazon ML)to connect to
- // a database on an Amazon Redshift cluster. The username should have sufficient
- // permissions to execute the RedshiftSelectSqlQuery query. The username should
- // be valid for an Amazon Redshift USER (http://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html).
- DatabaseUserName *string `min:"1" type:"string"`
- // Describes the database details required to connect to an Amazon Redshift
- // database.
- RedshiftDatabase *RedshiftDatabase `type:"structure"`
- // The SQL query that is specified during CreateDataSourceFromRedshift. Returns
- // only if Verbose is true in GetDataSourceInput.
- SelectSqlQuery *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s RedshiftMetadata) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s RedshiftMetadata) GoString() string {
- return s.String()
- }
- // Describes the data specification of a DataSource.
- type S3DataSpec struct {
- _ struct{} `type:"structure"`
- // The location of the data file(s) used by a DataSource. The URI specifies
- // a data file or an Amazon Simple Storage Service (Amazon S3) directory or
- // bucket containing data files.
- //
- // DataLocationS3 is a required field
- DataLocationS3 *string `type:"string" required:"true"`
- // A JSON string that represents the splitting and rearrangement processing
- // to be applied to a DataSource. If the DataRearrangement parameter is not
- // provided, all of the input data is used to create the Datasource.
- //
- // There are multiple parameters that control what data is used to create a
- // datasource:
- //
- // * percentBegin
- //
- // Use percentBegin to indicate the beginning of the range of the data used
- // to create the Datasource. If you do not include percentBegin and percentEnd,
- // Amazon ML includes all of the data when creating the datasource.
- //
- // * percentEnd
- //
- // Use percentEnd to indicate the end of the range of the data used to create
- // the Datasource. If you do not include percentBegin and percentEnd, Amazon
- // ML includes all of the data when creating the datasource.
- //
- // * complement
- //
- // The complement parameter instructs Amazon ML to use the data that is not
- // included in the range of percentBegin to percentEnd to create a datasource.
- // The complement parameter is useful if you need to create complementary
- // datasources for training and evaluation. To create a complementary datasource,
- // use the same values for percentBegin and percentEnd, along with the complement
- // parameter.
- //
- // For example, the following two datasources do not share any data, and can
- // be used to train and evaluate a model. The first datasource has 25 percent
- // of the data, and the second one has 75 percent of the data.
- //
- // Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}
- //
- // Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25,
- // "complement":"true"}}
- //
- // * strategy
- //
- // To change how Amazon ML splits the data for a datasource, use the strategy
- // parameter.
- //
- // The default value for the strategy parameter is sequential, meaning that
- // Amazon ML takes all of the data records between the percentBegin and percentEnd
- // parameters for the datasource, in the order that the records appear in
- // the input data.
- //
- // The following two DataRearrangement lines are examples of sequentially ordered
- // training and evaluation datasources:
- //
- // Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
- // "strategy":"sequential"}}
- //
- // Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100,
- // "strategy":"sequential", "complement":"true"}}
- //
- // To randomly split the input data into the proportions indicated by the percentBegin
- // and percentEnd parameters, set the strategy parameter to random and provide
- // a string that is used as the seed value for the random data splitting
- // (for example, you can use the S3 path to your data as the random seed
- // string). If you choose the random split strategy, Amazon ML assigns each
- // row of data a pseudo-random number between 0 and 100, and then selects
- // the rows that have an assigned number between percentBegin and percentEnd.
- // Pseudo-random numbers are assigned using both the input seed string value
- // and the byte offset as a seed, so changing the data results in a different
- // split. Any existing ordering is preserved. The random splitting strategy
- // ensures that variables in the training and evaluation data are distributed
- // similarly. It is useful in the cases where the input data may have an
- // implicit sort order, which would otherwise result in training and evaluation
- // datasources containing non-similar data records.
- //
- // The following two DataRearrangement lines are examples of non-sequentially
- // ordered training and evaluation datasources:
- //
- // Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
- // "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}
- //
- // Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100,
- // "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}
- DataRearrangement *string `type:"string"`
- // A JSON string that represents the schema for an Amazon S3 DataSource. The
- // DataSchema defines the structure of the observation data in the data file(s)
- // referenced in the DataSource.
- //
- // You must provide either the DataSchema or the DataSchemaLocationS3.
- //
- // Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames
- // have an array of key-value pairs for their value. Use the following format
- // to define your DataSchema.
- //
- // { "version": "1.0",
- //
- // "recordAnnotationFieldName": "F1",
- //
- // "recordWeightFieldName": "F2",
- //
- // "targetFieldName": "F3",
- //
- // "dataFormat": "CSV",
- //
- // "dataFileContainsHeader": true,
- //
- // "attributes": [
- //
- // { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType":
- // "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName":
- // "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL"
- // }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType":
- // "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE"
- // } ],
- //
- // "excludedVariableNames": [ "F6" ] }
- DataSchema *string `type:"string"`
- // Describes the schema location in Amazon S3. You must provide either the DataSchema
- // or the DataSchemaLocationS3.
- DataSchemaLocationS3 *string `type:"string"`
- }
- // String returns the string representation
- func (s S3DataSpec) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s S3DataSpec) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *S3DataSpec) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "S3DataSpec"}
- if s.DataLocationS3 == nil {
- invalidParams.Add(request.NewErrParamRequired("DataLocationS3"))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // A custom key-value pair associated with an ML object, such as an ML model.
- type Tag struct {
- _ struct{} `type:"structure"`
- // A unique identifier for the tag. Valid characters include Unicode letters,
- // digits, white space, _, ., /, =, +, -, %, and @.
- Key *string `min:"1" type:"string"`
- // An optional string, typically used to describe or define the tag. Valid characters
- // include Unicode letters, digits, white space, _, ., /, =, +, -, %, and @.
- Value *string `type:"string"`
- }
- // String returns the string representation
- func (s Tag) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s Tag) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *Tag) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "Tag"}
- if s.Key != nil && len(*s.Key) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("Key", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- type UpdateBatchPredictionInput struct {
- _ struct{} `type:"structure"`
- // The ID assigned to the BatchPrediction during creation.
- //
- // BatchPredictionId is a required field
- BatchPredictionId *string `min:"1" type:"string" required:"true"`
- // A new user-supplied name or description of the BatchPrediction.
- //
- // BatchPredictionName is a required field
- BatchPredictionName *string `type:"string" required:"true"`
- }
- // String returns the string representation
- func (s UpdateBatchPredictionInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s UpdateBatchPredictionInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *UpdateBatchPredictionInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "UpdateBatchPredictionInput"}
- if s.BatchPredictionId == nil {
- invalidParams.Add(request.NewErrParamRequired("BatchPredictionId"))
- }
- if s.BatchPredictionId != nil && len(*s.BatchPredictionId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("BatchPredictionId", 1))
- }
- if s.BatchPredictionName == nil {
- invalidParams.Add(request.NewErrParamRequired("BatchPredictionName"))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of an UpdateBatchPrediction operation.
- //
- // You can see the updated content by using the GetBatchPrediction operation.
- type UpdateBatchPredictionOutput struct {
- _ struct{} `type:"structure"`
- // The ID assigned to the BatchPrediction during creation. This value should
- // be identical to the value of the BatchPredictionId in the request.
- BatchPredictionId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s UpdateBatchPredictionOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s UpdateBatchPredictionOutput) GoString() string {
- return s.String()
- }
- type UpdateDataSourceInput struct {
- _ struct{} `type:"structure"`
- // The ID assigned to the DataSource during creation.
- //
- // DataSourceId is a required field
- DataSourceId *string `min:"1" type:"string" required:"true"`
- // A new user-supplied name or description of the DataSource that will replace
- // the current description.
- //
- // DataSourceName is a required field
- DataSourceName *string `type:"string" required:"true"`
- }
- // String returns the string representation
- func (s UpdateDataSourceInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s UpdateDataSourceInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *UpdateDataSourceInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "UpdateDataSourceInput"}
- if s.DataSourceId == nil {
- invalidParams.Add(request.NewErrParamRequired("DataSourceId"))
- }
- if s.DataSourceId != nil && len(*s.DataSourceId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("DataSourceId", 1))
- }
- if s.DataSourceName == nil {
- invalidParams.Add(request.NewErrParamRequired("DataSourceName"))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of an UpdateDataSource operation.
- //
- // You can see the updated content by using the GetBatchPrediction operation.
- type UpdateDataSourceOutput struct {
- _ struct{} `type:"structure"`
- // The ID assigned to the DataSource during creation. This value should be identical
- // to the value of the DataSourceID in the request.
- DataSourceId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s UpdateDataSourceOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s UpdateDataSourceOutput) GoString() string {
- return s.String()
- }
- type UpdateEvaluationInput struct {
- _ struct{} `type:"structure"`
- // The ID assigned to the Evaluation during creation.
- //
- // EvaluationId is a required field
- EvaluationId *string `min:"1" type:"string" required:"true"`
- // A new user-supplied name or description of the Evaluation that will replace
- // the current content.
- //
- // EvaluationName is a required field
- EvaluationName *string `type:"string" required:"true"`
- }
- // String returns the string representation
- func (s UpdateEvaluationInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s UpdateEvaluationInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *UpdateEvaluationInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "UpdateEvaluationInput"}
- if s.EvaluationId == nil {
- invalidParams.Add(request.NewErrParamRequired("EvaluationId"))
- }
- if s.EvaluationId != nil && len(*s.EvaluationId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("EvaluationId", 1))
- }
- if s.EvaluationName == nil {
- invalidParams.Add(request.NewErrParamRequired("EvaluationName"))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of an UpdateEvaluation operation.
- //
- // You can see the updated content by using the GetEvaluation operation.
- type UpdateEvaluationOutput struct {
- _ struct{} `type:"structure"`
- // The ID assigned to the Evaluation during creation. This value should be identical
- // to the value of the Evaluation in the request.
- EvaluationId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s UpdateEvaluationOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s UpdateEvaluationOutput) GoString() string {
- return s.String()
- }
- type UpdateMLModelInput struct {
- _ struct{} `type:"structure"`
- // The ID assigned to the MLModel during creation.
- //
- // MLModelId is a required field
- MLModelId *string `min:"1" type:"string" required:"true"`
- // A user-supplied name or description of the MLModel.
- MLModelName *string `type:"string"`
- // The ScoreThreshold used in binary classification MLModel that marks the boundary
- // between a positive prediction and a negative prediction.
- //
- // Output values greater than or equal to the ScoreThreshold receive a positive
- // result from the MLModel, such as true. Output values less than the ScoreThreshold
- // receive a negative response from the MLModel, such as false.
- ScoreThreshold *float64 `type:"float"`
- }
- // String returns the string representation
- func (s UpdateMLModelInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s UpdateMLModelInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *UpdateMLModelInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "UpdateMLModelInput"}
- if s.MLModelId == nil {
- invalidParams.Add(request.NewErrParamRequired("MLModelId"))
- }
- if s.MLModelId != nil && len(*s.MLModelId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of an UpdateMLModel operation.
- //
- // You can see the updated content by using the GetMLModel operation.
- type UpdateMLModelOutput struct {
- _ struct{} `type:"structure"`
- // The ID assigned to the MLModel during creation. This value should be identical
- // to the value of the MLModelID in the request.
- MLModelId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s UpdateMLModelOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s UpdateMLModelOutput) GoString() string {
- return s.String()
- }
- // The function used to train an MLModel. Training choices supported by Amazon
- // ML include the following:
- //
- // * SGD - Stochastic Gradient Descent.
- // * RandomForest - Random forest of decision trees.
- const (
- // AlgorithmSgd is a Algorithm enum value
- AlgorithmSgd = "sgd"
- )
- // A list of the variables to use in searching or filtering BatchPrediction.
- //
- // * CreatedAt - Sets the search criteria to BatchPrediction creation date.
- //
- // * Status - Sets the search criteria to BatchPrediction status.
- // * Name - Sets the search criteria to the contents of BatchPredictionName.
- //
- // * IAMUser - Sets the search criteria to the user account that invoked
- // the BatchPrediction creation.
- // * MLModelId - Sets the search criteria to the MLModel used in the BatchPrediction.
- //
- // * DataSourceId - Sets the search criteria to the DataSource used in the
- // BatchPrediction.
- // * DataURI - Sets the search criteria to the data file(s) used in the BatchPrediction.
- // The URL can identify either a file or an Amazon Simple Storage Service
- // (Amazon S3) bucket or directory.
- const (
- // BatchPredictionFilterVariableCreatedAt is a BatchPredictionFilterVariable enum value
- BatchPredictionFilterVariableCreatedAt = "CreatedAt"
- // BatchPredictionFilterVariableLastUpdatedAt is a BatchPredictionFilterVariable enum value
- BatchPredictionFilterVariableLastUpdatedAt = "LastUpdatedAt"
- // BatchPredictionFilterVariableStatus is a BatchPredictionFilterVariable enum value
- BatchPredictionFilterVariableStatus = "Status"
- // BatchPredictionFilterVariableName is a BatchPredictionFilterVariable enum value
- BatchPredictionFilterVariableName = "Name"
- // BatchPredictionFilterVariableIamuser is a BatchPredictionFilterVariable enum value
- BatchPredictionFilterVariableIamuser = "IAMUser"
- // BatchPredictionFilterVariableMlmodelId is a BatchPredictionFilterVariable enum value
- BatchPredictionFilterVariableMlmodelId = "MLModelId"
- // BatchPredictionFilterVariableDataSourceId is a BatchPredictionFilterVariable enum value
- BatchPredictionFilterVariableDataSourceId = "DataSourceId"
- // BatchPredictionFilterVariableDataUri is a BatchPredictionFilterVariable enum value
- BatchPredictionFilterVariableDataUri = "DataURI"
- )
- // A list of the variables to use in searching or filtering DataSource.
- //
- // * CreatedAt - Sets the search criteria to DataSource creation date.
- // * Status - Sets the search criteria to DataSource status.
- // * Name - Sets the search criteria to the contents of DataSourceName.
- // * DataUri - Sets the search criteria to the URI of data files used to
- // create the DataSource. The URI can identify either a file or an Amazon
- // Simple Storage Service (Amazon S3) bucket or directory.
- // * IAMUser - Sets the search criteria to the user account that invoked
- // the DataSource creation.
- // NoteThe variable names should match the variable names in the DataSource.
- const (
- // DataSourceFilterVariableCreatedAt is a DataSourceFilterVariable enum value
- DataSourceFilterVariableCreatedAt = "CreatedAt"
- // DataSourceFilterVariableLastUpdatedAt is a DataSourceFilterVariable enum value
- DataSourceFilterVariableLastUpdatedAt = "LastUpdatedAt"
- // DataSourceFilterVariableStatus is a DataSourceFilterVariable enum value
- DataSourceFilterVariableStatus = "Status"
- // DataSourceFilterVariableName is a DataSourceFilterVariable enum value
- DataSourceFilterVariableName = "Name"
- // DataSourceFilterVariableDataLocationS3 is a DataSourceFilterVariable enum value
- DataSourceFilterVariableDataLocationS3 = "DataLocationS3"
- // DataSourceFilterVariableIamuser is a DataSourceFilterVariable enum value
- DataSourceFilterVariableIamuser = "IAMUser"
- )
- // Contains the key values of DetailsMap: PredictiveModelType- Indicates the type of the MLModel. Algorithm- Indicates the algorithm that was used for the MLModel
- const (
- // DetailsAttributesPredictiveModelType is a DetailsAttributes enum value
- DetailsAttributesPredictiveModelType = "PredictiveModelType"
- // DetailsAttributesAlgorithm is a DetailsAttributes enum value
- DetailsAttributesAlgorithm = "Algorithm"
- )
- // Object status with the following possible values:
- //
- // * PENDING
- // * INPROGRESS
- // * FAILED
- // * COMPLETED
- // * DELETED
- const (
- // EntityStatusPending is a EntityStatus enum value
- EntityStatusPending = "PENDING"
- // EntityStatusInprogress is a EntityStatus enum value
- EntityStatusInprogress = "INPROGRESS"
- // EntityStatusFailed is a EntityStatus enum value
- EntityStatusFailed = "FAILED"
- // EntityStatusCompleted is a EntityStatus enum value
- EntityStatusCompleted = "COMPLETED"
- // EntityStatusDeleted is a EntityStatus enum value
- EntityStatusDeleted = "DELETED"
- )
- // A list of the variables to use in searching or filtering Evaluation.
- //
- // * CreatedAt - Sets the search criteria to Evaluation creation date.
- // * Status - Sets the search criteria to Evaluation status.
- // * Name - Sets the search criteria to the contents of EvaluationName.
- // * IAMUser - Sets the search criteria to the user account that invoked
- // an evaluation.
- // * MLModelId - Sets the search criteria to the Predictor that was evaluated.
- //
- // * DataSourceId - Sets the search criteria to the DataSource used in evaluation.
- //
- // * DataUri - Sets the search criteria to the data file(s) used in evaluation.
- // The URL can identify either a file or an Amazon Simple Storage Service
- // (Amazon S3) bucket or directory.
- const (
- // EvaluationFilterVariableCreatedAt is a EvaluationFilterVariable enum value
- EvaluationFilterVariableCreatedAt = "CreatedAt"
- // EvaluationFilterVariableLastUpdatedAt is a EvaluationFilterVariable enum value
- EvaluationFilterVariableLastUpdatedAt = "LastUpdatedAt"
- // EvaluationFilterVariableStatus is a EvaluationFilterVariable enum value
- EvaluationFilterVariableStatus = "Status"
- // EvaluationFilterVariableName is a EvaluationFilterVariable enum value
- EvaluationFilterVariableName = "Name"
- // EvaluationFilterVariableIamuser is a EvaluationFilterVariable enum value
- EvaluationFilterVariableIamuser = "IAMUser"
- // EvaluationFilterVariableMlmodelId is a EvaluationFilterVariable enum value
- EvaluationFilterVariableMlmodelId = "MLModelId"
- // EvaluationFilterVariableDataSourceId is a EvaluationFilterVariable enum value
- EvaluationFilterVariableDataSourceId = "DataSourceId"
- // EvaluationFilterVariableDataUri is a EvaluationFilterVariable enum value
- EvaluationFilterVariableDataUri = "DataURI"
- )
- const (
- // MLModelFilterVariableCreatedAt is a MLModelFilterVariable enum value
- MLModelFilterVariableCreatedAt = "CreatedAt"
- // MLModelFilterVariableLastUpdatedAt is a MLModelFilterVariable enum value
- MLModelFilterVariableLastUpdatedAt = "LastUpdatedAt"
- // MLModelFilterVariableStatus is a MLModelFilterVariable enum value
- MLModelFilterVariableStatus = "Status"
- // MLModelFilterVariableName is a MLModelFilterVariable enum value
- MLModelFilterVariableName = "Name"
- // MLModelFilterVariableIamuser is a MLModelFilterVariable enum value
- MLModelFilterVariableIamuser = "IAMUser"
- // MLModelFilterVariableTrainingDataSourceId is a MLModelFilterVariable enum value
- MLModelFilterVariableTrainingDataSourceId = "TrainingDataSourceId"
- // MLModelFilterVariableRealtimeEndpointStatus is a MLModelFilterVariable enum value
- MLModelFilterVariableRealtimeEndpointStatus = "RealtimeEndpointStatus"
- // MLModelFilterVariableMlmodelType is a MLModelFilterVariable enum value
- MLModelFilterVariableMlmodelType = "MLModelType"
- // MLModelFilterVariableAlgorithm is a MLModelFilterVariable enum value
- MLModelFilterVariableAlgorithm = "Algorithm"
- // MLModelFilterVariableTrainingDataUri is a MLModelFilterVariable enum value
- MLModelFilterVariableTrainingDataUri = "TrainingDataURI"
- )
- const (
- // MLModelTypeRegression is a MLModelType enum value
- MLModelTypeRegression = "REGRESSION"
- // MLModelTypeBinary is a MLModelType enum value
- MLModelTypeBinary = "BINARY"
- // MLModelTypeMulticlass is a MLModelType enum value
- MLModelTypeMulticlass = "MULTICLASS"
- )
- const (
- // RealtimeEndpointStatusNone is a RealtimeEndpointStatus enum value
- RealtimeEndpointStatusNone = "NONE"
- // RealtimeEndpointStatusReady is a RealtimeEndpointStatus enum value
- RealtimeEndpointStatusReady = "READY"
- // RealtimeEndpointStatusUpdating is a RealtimeEndpointStatus enum value
- RealtimeEndpointStatusUpdating = "UPDATING"
- // RealtimeEndpointStatusFailed is a RealtimeEndpointStatus enum value
- RealtimeEndpointStatusFailed = "FAILED"
- )
- // The sort order specified in a listing condition. Possible values include
- // the following:
- //
- // * asc - Present the information in ascending order (from A-Z).
- // * dsc - Present the information in descending order (from Z-A).
- const (
- // SortOrderAsc is a SortOrder enum value
- SortOrderAsc = "asc"
- // SortOrderDsc is a SortOrder enum value
- SortOrderDsc = "dsc"
- )
- const (
- // TaggableResourceTypeBatchPrediction is a TaggableResourceType enum value
- TaggableResourceTypeBatchPrediction = "BatchPrediction"
- // TaggableResourceTypeDataSource is a TaggableResourceType enum value
- TaggableResourceTypeDataSource = "DataSource"
- // TaggableResourceTypeEvaluation is a TaggableResourceType enum value
- TaggableResourceTypeEvaluation = "Evaluation"
- // TaggableResourceTypeMlmodel is a TaggableResourceType enum value
- TaggableResourceTypeMlmodel = "MLModel"
- )
|