encode.go 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428
  1. // Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "encoding"
  6. "fmt"
  7. "io"
  8. "reflect"
  9. "sort"
  10. "sync"
  11. )
  12. const (
  13. defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024
  14. )
  15. // AsSymbolFlag defines what should be encoded as symbols.
  16. type AsSymbolFlag uint8
  17. const (
  18. // AsSymbolDefault is default.
  19. // Currently, this means only encode struct field names as symbols.
  20. // The default is subject to change.
  21. AsSymbolDefault AsSymbolFlag = iota
  22. // AsSymbolAll means encode anything which could be a symbol as a symbol.
  23. AsSymbolAll = 0xfe
  24. // AsSymbolNone means do not encode anything as a symbol.
  25. AsSymbolNone = 1 << iota
  26. // AsSymbolMapStringKeys means encode keys in map[string]XXX as symbols.
  27. AsSymbolMapStringKeysFlag
  28. // AsSymbolStructFieldName means encode struct field names as symbols.
  29. AsSymbolStructFieldNameFlag
  30. )
  31. // encWriter abstracts writing to a byte array or to an io.Writer.
  32. type encWriter interface {
  33. writeb([]byte)
  34. writestr(string)
  35. writen1(byte)
  36. writen2(byte, byte)
  37. atEndOfEncode()
  38. }
  39. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  40. type encDriver interface {
  41. IsBuiltinType(rt uintptr) bool
  42. EncodeBuiltin(rt uintptr, v interface{})
  43. EncodeNil()
  44. EncodeInt(i int64)
  45. EncodeUint(i uint64)
  46. EncodeBool(b bool)
  47. EncodeFloat32(f float32)
  48. EncodeFloat64(f float64)
  49. // encodeExtPreamble(xtag byte, length int)
  50. EncodeRawExt(re *RawExt, e *Encoder)
  51. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  52. EncodeArrayStart(length int)
  53. EncodeMapStart(length int)
  54. EncodeString(c charEncoding, v string)
  55. EncodeSymbol(v string)
  56. EncodeStringBytes(c charEncoding, v []byte)
  57. //TODO
  58. //encBignum(f *big.Int)
  59. //encStringRunes(c charEncoding, v []rune)
  60. reset()
  61. }
  62. type encDriverAsis interface {
  63. EncodeAsis(v []byte)
  64. }
  65. type encNoSeparator struct{}
  66. func (_ encNoSeparator) EncodeEnd() {}
  67. type ioEncWriterWriter interface {
  68. WriteByte(c byte) error
  69. WriteString(s string) (n int, err error)
  70. Write(p []byte) (n int, err error)
  71. }
  72. type ioEncStringWriter interface {
  73. WriteString(s string) (n int, err error)
  74. }
  75. type EncodeOptions struct {
  76. // Encode a struct as an array, and not as a map
  77. StructToArray bool
  78. // Canonical representation means that encoding a value will always result in the same
  79. // sequence of bytes.
  80. //
  81. // This only affects maps, as the iteration order for maps is random.
  82. //
  83. // The implementation MAY use the natural sort order for the map keys if possible:
  84. //
  85. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  86. // then the map keys are first sorted in natural order and then written
  87. // with corresponding map values to the strema.
  88. // - If there is no natural sort order, then the map keys will first be
  89. // encoded into []byte, and then sorted,
  90. // before writing the sorted keys and the corresponding map values to the stream.
  91. //
  92. Canonical bool
  93. // CheckCircularRef controls whether we check for circular references
  94. // and error fast during an encode.
  95. //
  96. // If enabled, an error is received if a pointer to a struct
  97. // references itself either directly or through one of its fields (iteratively).
  98. //
  99. // This is opt-in, as there may be a performance hit to checking circular references.
  100. CheckCircularRef bool
  101. // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
  102. // when checking if a value is empty.
  103. //
  104. // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
  105. RecursiveEmptyCheck bool
  106. // AsSymbols defines what should be encoded as symbols.
  107. //
  108. // Encoding as symbols can reduce the encoded size significantly.
  109. //
  110. // However, during decoding, each string to be encoded as a symbol must
  111. // be checked to see if it has been seen before. Consequently, encoding time
  112. // will increase if using symbols, because string comparisons has a clear cost.
  113. //
  114. // Sample values:
  115. // AsSymbolNone
  116. // AsSymbolAll
  117. // AsSymbolMapStringKeys
  118. // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  119. AsSymbols AsSymbolFlag
  120. }
  121. // ---------------------------------------------
  122. type simpleIoEncWriterWriter struct {
  123. w io.Writer
  124. bw io.ByteWriter
  125. sw ioEncStringWriter
  126. bs [1]byte
  127. }
  128. func (o *simpleIoEncWriterWriter) WriteByte(c byte) (err error) {
  129. if o.bw != nil {
  130. return o.bw.WriteByte(c)
  131. }
  132. // _, err = o.w.Write([]byte{c})
  133. o.bs[0] = c
  134. _, err = o.w.Write(o.bs[:])
  135. return
  136. }
  137. func (o *simpleIoEncWriterWriter) WriteString(s string) (n int, err error) {
  138. if o.sw != nil {
  139. return o.sw.WriteString(s)
  140. }
  141. // return o.w.Write([]byte(s))
  142. return o.w.Write(bytesView(s))
  143. }
  144. func (o *simpleIoEncWriterWriter) Write(p []byte) (n int, err error) {
  145. return o.w.Write(p)
  146. }
  147. // ----------------------------------------
  148. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  149. type ioEncWriter struct {
  150. w ioEncWriterWriter
  151. s simpleIoEncWriterWriter
  152. // x [8]byte // temp byte array re-used internally for efficiency
  153. }
  154. func (z *ioEncWriter) writeb(bs []byte) {
  155. if len(bs) == 0 {
  156. return
  157. }
  158. n, err := z.w.Write(bs)
  159. if err != nil {
  160. panic(err)
  161. }
  162. if n != len(bs) {
  163. panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, Wrote: %v", len(bs), n))
  164. }
  165. }
  166. func (z *ioEncWriter) writestr(s string) {
  167. n, err := z.w.WriteString(s)
  168. if err != nil {
  169. panic(err)
  170. }
  171. if n != len(s) {
  172. panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, Wrote: %v", len(s), n))
  173. }
  174. }
  175. func (z *ioEncWriter) writen1(b byte) {
  176. if err := z.w.WriteByte(b); err != nil {
  177. panic(err)
  178. }
  179. }
  180. func (z *ioEncWriter) writen2(b1 byte, b2 byte) {
  181. z.writen1(b1)
  182. z.writen1(b2)
  183. }
  184. func (z *ioEncWriter) atEndOfEncode() {}
  185. // ----------------------------------------
  186. // bytesEncWriter implements encWriter and can write to an byte slice.
  187. // It is used by Marshal function.
  188. type bytesEncWriter struct {
  189. b []byte
  190. c int // cursor
  191. out *[]byte // write out on atEndOfEncode
  192. }
  193. func (z *bytesEncWriter) writeb(s []byte) {
  194. if len(s) > 0 {
  195. c := z.grow(len(s))
  196. copy(z.b[c:], s)
  197. }
  198. }
  199. func (z *bytesEncWriter) writestr(s string) {
  200. if len(s) > 0 {
  201. c := z.grow(len(s))
  202. copy(z.b[c:], s)
  203. }
  204. }
  205. func (z *bytesEncWriter) writen1(b1 byte) {
  206. c := z.grow(1)
  207. z.b[c] = b1
  208. }
  209. func (z *bytesEncWriter) writen2(b1 byte, b2 byte) {
  210. c := z.grow(2)
  211. z.b[c+1] = b2
  212. z.b[c] = b1
  213. }
  214. func (z *bytesEncWriter) atEndOfEncode() {
  215. *(z.out) = z.b[:z.c]
  216. }
  217. func (z *bytesEncWriter) grow(n int) (oldcursor int) {
  218. oldcursor = z.c
  219. z.c = oldcursor + n
  220. if z.c > len(z.b) {
  221. if z.c > cap(z.b) {
  222. // appendslice logic (if cap < 1024, *2, else *1.25): more expensive. many copy calls.
  223. // bytes.Buffer model (2*cap + n): much better
  224. // bs := make([]byte, 2*cap(z.b)+n)
  225. bs := make([]byte, growCap(cap(z.b), 1, n))
  226. copy(bs, z.b[:oldcursor])
  227. z.b = bs
  228. } else {
  229. z.b = z.b[:cap(z.b)]
  230. }
  231. }
  232. return
  233. }
  234. // ---------------------------------------------
  235. type encFnInfo struct {
  236. e *Encoder
  237. ti *typeInfo
  238. xfFn Ext
  239. xfTag uint64
  240. seq seqType
  241. }
  242. func (f *encFnInfo) builtin(rv reflect.Value) {
  243. f.e.e.EncodeBuiltin(f.ti.rtid, rv.Interface())
  244. }
  245. func (f *encFnInfo) rawExt(rv reflect.Value) {
  246. // rev := rv.Interface().(RawExt)
  247. // f.e.e.EncodeRawExt(&rev, f.e)
  248. var re *RawExt
  249. if rv.CanAddr() {
  250. re = rv.Addr().Interface().(*RawExt)
  251. } else {
  252. rev := rv.Interface().(RawExt)
  253. re = &rev
  254. }
  255. f.e.e.EncodeRawExt(re, f.e)
  256. }
  257. func (f *encFnInfo) ext(rv reflect.Value) {
  258. // if this is a struct|array and it was addressable, then pass the address directly (not the value)
  259. if k := rv.Kind(); (k == reflect.Struct || k == reflect.Array) && rv.CanAddr() {
  260. rv = rv.Addr()
  261. }
  262. f.e.e.EncodeExt(rv.Interface(), f.xfTag, f.xfFn, f.e)
  263. }
  264. func (f *encFnInfo) getValueForMarshalInterface(rv reflect.Value, indir int8) (v interface{}, proceed bool) {
  265. if indir == 0 {
  266. v = rv.Interface()
  267. } else if indir == -1 {
  268. // If a non-pointer was passed to Encode(), then that value is not addressable.
  269. // Take addr if addressable, else copy value to an addressable value.
  270. if rv.CanAddr() {
  271. v = rv.Addr().Interface()
  272. } else {
  273. rv2 := reflect.New(rv.Type())
  274. rv2.Elem().Set(rv)
  275. v = rv2.Interface()
  276. // fmt.Printf("rv.Type: %v, rv2.Type: %v, v: %v\n", rv.Type(), rv2.Type(), v)
  277. }
  278. } else {
  279. for j := int8(0); j < indir; j++ {
  280. if rv.IsNil() {
  281. f.e.e.EncodeNil()
  282. return
  283. }
  284. rv = rv.Elem()
  285. }
  286. v = rv.Interface()
  287. }
  288. return v, true
  289. }
  290. func (f *encFnInfo) selferMarshal(rv reflect.Value) {
  291. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.csIndir); proceed {
  292. v.(Selfer).CodecEncodeSelf(f.e)
  293. }
  294. }
  295. func (f *encFnInfo) binaryMarshal(rv reflect.Value) {
  296. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.bmIndir); proceed {
  297. bs, fnerr := v.(encoding.BinaryMarshaler).MarshalBinary()
  298. f.e.marshal(bs, fnerr, false, c_RAW)
  299. }
  300. }
  301. func (f *encFnInfo) textMarshal(rv reflect.Value) {
  302. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.tmIndir); proceed {
  303. // debugf(">>>> encoding.TextMarshaler: %T", rv.Interface())
  304. bs, fnerr := v.(encoding.TextMarshaler).MarshalText()
  305. f.e.marshal(bs, fnerr, false, c_UTF8)
  306. }
  307. }
  308. func (f *encFnInfo) jsonMarshal(rv reflect.Value) {
  309. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.jmIndir); proceed {
  310. bs, fnerr := v.(jsonMarshaler).MarshalJSON()
  311. f.e.marshal(bs, fnerr, true, c_UTF8)
  312. }
  313. }
  314. func (f *encFnInfo) kBool(rv reflect.Value) {
  315. f.e.e.EncodeBool(rv.Bool())
  316. }
  317. func (f *encFnInfo) kString(rv reflect.Value) {
  318. f.e.e.EncodeString(c_UTF8, rv.String())
  319. }
  320. func (f *encFnInfo) kFloat64(rv reflect.Value) {
  321. f.e.e.EncodeFloat64(rv.Float())
  322. }
  323. func (f *encFnInfo) kFloat32(rv reflect.Value) {
  324. f.e.e.EncodeFloat32(float32(rv.Float()))
  325. }
  326. func (f *encFnInfo) kInt(rv reflect.Value) {
  327. f.e.e.EncodeInt(rv.Int())
  328. }
  329. func (f *encFnInfo) kUint(rv reflect.Value) {
  330. f.e.e.EncodeUint(rv.Uint())
  331. }
  332. func (f *encFnInfo) kInvalid(rv reflect.Value) {
  333. f.e.e.EncodeNil()
  334. }
  335. func (f *encFnInfo) kErr(rv reflect.Value) {
  336. f.e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  337. }
  338. func (f *encFnInfo) kSlice(rv reflect.Value) {
  339. ti := f.ti
  340. // array may be non-addressable, so we have to manage with care
  341. // (don't call rv.Bytes, rv.Slice, etc).
  342. // E.g. type struct S{B [2]byte};
  343. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  344. e := f.e
  345. if f.seq != seqTypeArray {
  346. if rv.IsNil() {
  347. e.e.EncodeNil()
  348. return
  349. }
  350. // If in this method, then there was no extension function defined.
  351. // So it's okay to treat as []byte.
  352. if ti.rtid == uint8SliceTypId {
  353. e.e.EncodeStringBytes(c_RAW, rv.Bytes())
  354. return
  355. }
  356. }
  357. cr := e.cr
  358. rtelem := ti.rt.Elem()
  359. l := rv.Len()
  360. if ti.rtid == uint8SliceTypId || rtelem.Kind() == reflect.Uint8 {
  361. switch f.seq {
  362. case seqTypeArray:
  363. // if l == 0 { e.e.encodeStringBytes(c_RAW, nil) } else
  364. if rv.CanAddr() {
  365. e.e.EncodeStringBytes(c_RAW, rv.Slice(0, l).Bytes())
  366. } else {
  367. var bs []byte
  368. if l <= cap(e.b) {
  369. bs = e.b[:l]
  370. } else {
  371. bs = make([]byte, l)
  372. }
  373. reflect.Copy(reflect.ValueOf(bs), rv)
  374. // TODO: Test that reflect.Copy works instead of manual one-by-one
  375. // for i := 0; i < l; i++ {
  376. // bs[i] = byte(rv.Index(i).Uint())
  377. // }
  378. e.e.EncodeStringBytes(c_RAW, bs)
  379. }
  380. case seqTypeSlice:
  381. e.e.EncodeStringBytes(c_RAW, rv.Bytes())
  382. case seqTypeChan:
  383. bs := e.b[:0]
  384. // do not use range, so that the number of elements encoded
  385. // does not change, and encoding does not hang waiting on someone to close chan.
  386. // for b := range rv.Interface().(<-chan byte) {
  387. // bs = append(bs, b)
  388. // }
  389. ch := rv.Interface().(<-chan byte)
  390. for i := 0; i < l; i++ {
  391. bs = append(bs, <-ch)
  392. }
  393. e.e.EncodeStringBytes(c_RAW, bs)
  394. }
  395. return
  396. }
  397. if ti.mbs {
  398. if l%2 == 1 {
  399. e.errorf("mapBySlice requires even slice length, but got %v", l)
  400. return
  401. }
  402. e.e.EncodeMapStart(l / 2)
  403. } else {
  404. e.e.EncodeArrayStart(l)
  405. }
  406. if l > 0 {
  407. for rtelem.Kind() == reflect.Ptr {
  408. rtelem = rtelem.Elem()
  409. }
  410. // if kind is reflect.Interface, do not pre-determine the
  411. // encoding type, because preEncodeValue may break it down to
  412. // a concrete type and kInterface will bomb.
  413. var fn *encFn
  414. if rtelem.Kind() != reflect.Interface {
  415. rtelemid := reflect.ValueOf(rtelem).Pointer()
  416. fn = e.getEncFn(rtelemid, rtelem, true, true)
  417. }
  418. // TODO: Consider perf implication of encoding odd index values as symbols if type is string
  419. for j := 0; j < l; j++ {
  420. if cr != nil {
  421. if ti.mbs {
  422. if j%2 == 0 {
  423. cr.sendContainerState(containerMapKey)
  424. } else {
  425. cr.sendContainerState(containerMapValue)
  426. }
  427. } else {
  428. cr.sendContainerState(containerArrayElem)
  429. }
  430. }
  431. if f.seq == seqTypeChan {
  432. if rv2, ok2 := rv.Recv(); ok2 {
  433. e.encodeValue(rv2, fn)
  434. } else {
  435. e.encode(nil) // WE HAVE TO DO SOMETHING, so nil if nothing received.
  436. }
  437. } else {
  438. e.encodeValue(rv.Index(j), fn)
  439. }
  440. }
  441. }
  442. if cr != nil {
  443. if ti.mbs {
  444. cr.sendContainerState(containerMapEnd)
  445. } else {
  446. cr.sendContainerState(containerArrayEnd)
  447. }
  448. }
  449. }
  450. func (f *encFnInfo) kStruct(rv reflect.Value) {
  451. fti := f.ti
  452. e := f.e
  453. cr := e.cr
  454. tisfi := fti.sfip
  455. toMap := !(fti.toArray || e.h.StructToArray)
  456. newlen := len(fti.sfi)
  457. // Use sync.Pool to reduce allocating slices unnecessarily.
  458. // The cost of sync.Pool is less than the cost of new allocation.
  459. pool, poolv, fkvs := encStructPoolGet(newlen)
  460. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  461. if toMap {
  462. tisfi = fti.sfi
  463. }
  464. newlen = 0
  465. var kv stringRv
  466. recur := e.h.RecursiveEmptyCheck
  467. for _, si := range tisfi {
  468. kv.r = si.field(rv, false)
  469. if toMap {
  470. if si.omitEmpty && isEmptyValue(kv.r, recur, recur) {
  471. continue
  472. }
  473. kv.v = si.encName
  474. } else {
  475. // use the zero value.
  476. // if a reference or struct, set to nil (so you do not output too much)
  477. if si.omitEmpty && isEmptyValue(kv.r, recur, recur) {
  478. switch kv.r.Kind() {
  479. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
  480. kv.r = reflect.Value{} //encode as nil
  481. }
  482. }
  483. }
  484. fkvs[newlen] = kv
  485. newlen++
  486. }
  487. // debugf(">>>> kStruct: newlen: %v", newlen)
  488. // sep := !e.be
  489. ee := e.e //don't dereference every time
  490. if toMap {
  491. ee.EncodeMapStart(newlen)
  492. // asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  493. asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  494. for j := 0; j < newlen; j++ {
  495. kv = fkvs[j]
  496. if cr != nil {
  497. cr.sendContainerState(containerMapKey)
  498. }
  499. if asSymbols {
  500. ee.EncodeSymbol(kv.v)
  501. } else {
  502. ee.EncodeString(c_UTF8, kv.v)
  503. }
  504. if cr != nil {
  505. cr.sendContainerState(containerMapValue)
  506. }
  507. e.encodeValue(kv.r, nil)
  508. }
  509. if cr != nil {
  510. cr.sendContainerState(containerMapEnd)
  511. }
  512. } else {
  513. ee.EncodeArrayStart(newlen)
  514. for j := 0; j < newlen; j++ {
  515. kv = fkvs[j]
  516. if cr != nil {
  517. cr.sendContainerState(containerArrayElem)
  518. }
  519. e.encodeValue(kv.r, nil)
  520. }
  521. if cr != nil {
  522. cr.sendContainerState(containerArrayEnd)
  523. }
  524. }
  525. // do not use defer. Instead, use explicit pool return at end of function.
  526. // defer has a cost we are trying to avoid.
  527. // If there is a panic and these slices are not returned, it is ok.
  528. if pool != nil {
  529. pool.Put(poolv)
  530. }
  531. }
  532. // func (f *encFnInfo) kPtr(rv reflect.Value) {
  533. // debugf(">>>>>>> ??? encode kPtr called - shouldn't get called")
  534. // if rv.IsNil() {
  535. // f.e.e.encodeNil()
  536. // return
  537. // }
  538. // f.e.encodeValue(rv.Elem())
  539. // }
  540. // func (f *encFnInfo) kInterface(rv reflect.Value) {
  541. // println("kInterface called")
  542. // debug.PrintStack()
  543. // if rv.IsNil() {
  544. // f.e.e.EncodeNil()
  545. // return
  546. // }
  547. // f.e.encodeValue(rv.Elem(), nil)
  548. // }
  549. func (f *encFnInfo) kMap(rv reflect.Value) {
  550. ee := f.e.e
  551. if rv.IsNil() {
  552. ee.EncodeNil()
  553. return
  554. }
  555. l := rv.Len()
  556. ee.EncodeMapStart(l)
  557. e := f.e
  558. cr := e.cr
  559. if l == 0 {
  560. if cr != nil {
  561. cr.sendContainerState(containerMapEnd)
  562. }
  563. return
  564. }
  565. var asSymbols bool
  566. // determine the underlying key and val encFn's for the map.
  567. // This eliminates some work which is done for each loop iteration i.e.
  568. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  569. //
  570. // However, if kind is reflect.Interface, do not pre-determine the
  571. // encoding type, because preEncodeValue may break it down to
  572. // a concrete type and kInterface will bomb.
  573. var keyFn, valFn *encFn
  574. ti := f.ti
  575. rtkey := ti.rt.Key()
  576. rtval := ti.rt.Elem()
  577. rtkeyid := reflect.ValueOf(rtkey).Pointer()
  578. // keyTypeIsString := f.ti.rt.Key().Kind() == reflect.String
  579. var keyTypeIsString = rtkeyid == stringTypId
  580. if keyTypeIsString {
  581. asSymbols = e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0
  582. } else {
  583. for rtkey.Kind() == reflect.Ptr {
  584. rtkey = rtkey.Elem()
  585. }
  586. if rtkey.Kind() != reflect.Interface {
  587. rtkeyid = reflect.ValueOf(rtkey).Pointer()
  588. keyFn = e.getEncFn(rtkeyid, rtkey, true, true)
  589. }
  590. }
  591. for rtval.Kind() == reflect.Ptr {
  592. rtval = rtval.Elem()
  593. }
  594. if rtval.Kind() != reflect.Interface {
  595. rtvalid := reflect.ValueOf(rtval).Pointer()
  596. valFn = e.getEncFn(rtvalid, rtval, true, true)
  597. }
  598. mks := rv.MapKeys()
  599. // for j, lmks := 0, len(mks); j < lmks; j++ {
  600. if e.h.Canonical {
  601. e.kMapCanonical(rtkeyid, rtkey, rv, mks, valFn, asSymbols)
  602. } else {
  603. for j := range mks {
  604. if cr != nil {
  605. cr.sendContainerState(containerMapKey)
  606. }
  607. if keyTypeIsString {
  608. if asSymbols {
  609. ee.EncodeSymbol(mks[j].String())
  610. } else {
  611. ee.EncodeString(c_UTF8, mks[j].String())
  612. }
  613. } else {
  614. e.encodeValue(mks[j], keyFn)
  615. }
  616. if cr != nil {
  617. cr.sendContainerState(containerMapValue)
  618. }
  619. e.encodeValue(rv.MapIndex(mks[j]), valFn)
  620. }
  621. }
  622. if cr != nil {
  623. cr.sendContainerState(containerMapEnd)
  624. }
  625. }
  626. func (e *Encoder) kMapCanonical(rtkeyid uintptr, rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *encFn, asSymbols bool) {
  627. ee := e.e
  628. cr := e.cr
  629. // we previously did out-of-band if an extension was registered.
  630. // This is not necessary, as the natural kind is sufficient for ordering.
  631. if rtkeyid == uint8SliceTypId {
  632. mksv := make([]bytesRv, len(mks))
  633. for i, k := range mks {
  634. v := &mksv[i]
  635. v.r = k
  636. v.v = k.Bytes()
  637. }
  638. sort.Sort(bytesRvSlice(mksv))
  639. for i := range mksv {
  640. if cr != nil {
  641. cr.sendContainerState(containerMapKey)
  642. }
  643. ee.EncodeStringBytes(c_RAW, mksv[i].v)
  644. if cr != nil {
  645. cr.sendContainerState(containerMapValue)
  646. }
  647. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  648. }
  649. } else {
  650. switch rtkey.Kind() {
  651. case reflect.Bool:
  652. mksv := make([]boolRv, len(mks))
  653. for i, k := range mks {
  654. v := &mksv[i]
  655. v.r = k
  656. v.v = k.Bool()
  657. }
  658. sort.Sort(boolRvSlice(mksv))
  659. for i := range mksv {
  660. if cr != nil {
  661. cr.sendContainerState(containerMapKey)
  662. }
  663. ee.EncodeBool(mksv[i].v)
  664. if cr != nil {
  665. cr.sendContainerState(containerMapValue)
  666. }
  667. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  668. }
  669. case reflect.String:
  670. mksv := make([]stringRv, len(mks))
  671. for i, k := range mks {
  672. v := &mksv[i]
  673. v.r = k
  674. v.v = k.String()
  675. }
  676. sort.Sort(stringRvSlice(mksv))
  677. for i := range mksv {
  678. if cr != nil {
  679. cr.sendContainerState(containerMapKey)
  680. }
  681. if asSymbols {
  682. ee.EncodeSymbol(mksv[i].v)
  683. } else {
  684. ee.EncodeString(c_UTF8, mksv[i].v)
  685. }
  686. if cr != nil {
  687. cr.sendContainerState(containerMapValue)
  688. }
  689. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  690. }
  691. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  692. mksv := make([]uintRv, len(mks))
  693. for i, k := range mks {
  694. v := &mksv[i]
  695. v.r = k
  696. v.v = k.Uint()
  697. }
  698. sort.Sort(uintRvSlice(mksv))
  699. for i := range mksv {
  700. if cr != nil {
  701. cr.sendContainerState(containerMapKey)
  702. }
  703. ee.EncodeUint(mksv[i].v)
  704. if cr != nil {
  705. cr.sendContainerState(containerMapValue)
  706. }
  707. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  708. }
  709. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  710. mksv := make([]intRv, len(mks))
  711. for i, k := range mks {
  712. v := &mksv[i]
  713. v.r = k
  714. v.v = k.Int()
  715. }
  716. sort.Sort(intRvSlice(mksv))
  717. for i := range mksv {
  718. if cr != nil {
  719. cr.sendContainerState(containerMapKey)
  720. }
  721. ee.EncodeInt(mksv[i].v)
  722. if cr != nil {
  723. cr.sendContainerState(containerMapValue)
  724. }
  725. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  726. }
  727. case reflect.Float32:
  728. mksv := make([]floatRv, len(mks))
  729. for i, k := range mks {
  730. v := &mksv[i]
  731. v.r = k
  732. v.v = k.Float()
  733. }
  734. sort.Sort(floatRvSlice(mksv))
  735. for i := range mksv {
  736. if cr != nil {
  737. cr.sendContainerState(containerMapKey)
  738. }
  739. ee.EncodeFloat32(float32(mksv[i].v))
  740. if cr != nil {
  741. cr.sendContainerState(containerMapValue)
  742. }
  743. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  744. }
  745. case reflect.Float64:
  746. mksv := make([]floatRv, len(mks))
  747. for i, k := range mks {
  748. v := &mksv[i]
  749. v.r = k
  750. v.v = k.Float()
  751. }
  752. sort.Sort(floatRvSlice(mksv))
  753. for i := range mksv {
  754. if cr != nil {
  755. cr.sendContainerState(containerMapKey)
  756. }
  757. ee.EncodeFloat64(mksv[i].v)
  758. if cr != nil {
  759. cr.sendContainerState(containerMapValue)
  760. }
  761. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  762. }
  763. default:
  764. // out-of-band
  765. // first encode each key to a []byte first, then sort them, then record
  766. var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
  767. e2 := NewEncoderBytes(&mksv, e.hh)
  768. mksbv := make([]bytesRv, len(mks))
  769. for i, k := range mks {
  770. v := &mksbv[i]
  771. l := len(mksv)
  772. e2.MustEncode(k)
  773. v.r = k
  774. v.v = mksv[l:]
  775. // fmt.Printf(">>>>> %s\n", mksv[l:])
  776. }
  777. sort.Sort(bytesRvSlice(mksbv))
  778. for j := range mksbv {
  779. if cr != nil {
  780. cr.sendContainerState(containerMapKey)
  781. }
  782. e.asis(mksbv[j].v)
  783. if cr != nil {
  784. cr.sendContainerState(containerMapValue)
  785. }
  786. e.encodeValue(rv.MapIndex(mksbv[j].r), valFn)
  787. }
  788. }
  789. }
  790. }
  791. // --------------------------------------------------
  792. // encFn encapsulates the captured variables and the encode function.
  793. // This way, we only do some calculations one times, and pass to the
  794. // code block that should be called (encapsulated in a function)
  795. // instead of executing the checks every time.
  796. type encFn struct {
  797. i encFnInfo
  798. f func(*encFnInfo, reflect.Value)
  799. }
  800. // --------------------------------------------------
  801. type encRtidFn struct {
  802. rtid uintptr
  803. fn encFn
  804. }
  805. // An Encoder writes an object to an output stream in the codec format.
  806. type Encoder struct {
  807. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  808. e encDriver
  809. // NOTE: Encoder shouldn't call it's write methods,
  810. // as the handler MAY need to do some coordination.
  811. w encWriter
  812. s []encRtidFn
  813. ci set
  814. be bool // is binary encoding
  815. js bool // is json handle
  816. wi ioEncWriter
  817. wb bytesEncWriter
  818. h *BasicHandle
  819. hh Handle
  820. cr containerStateRecv
  821. as encDriverAsis
  822. f map[uintptr]*encFn
  823. b [scratchByteArrayLen]byte
  824. }
  825. // NewEncoder returns an Encoder for encoding into an io.Writer.
  826. //
  827. // For efficiency, Users are encouraged to pass in a memory buffered writer
  828. // (eg bufio.Writer, bytes.Buffer).
  829. func NewEncoder(w io.Writer, h Handle) *Encoder {
  830. e := newEncoder(h)
  831. e.Reset(w)
  832. return e
  833. }
  834. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  835. // into a byte slice, using zero-copying to temporary slices.
  836. //
  837. // It will potentially replace the output byte slice pointed to.
  838. // After encoding, the out parameter contains the encoded contents.
  839. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  840. e := newEncoder(h)
  841. e.ResetBytes(out)
  842. return e
  843. }
  844. func newEncoder(h Handle) *Encoder {
  845. e := &Encoder{hh: h, h: h.getBasicHandle(), be: h.isBinary()}
  846. _, e.js = h.(*JsonHandle)
  847. e.e = h.newEncDriver(e)
  848. e.as, _ = e.e.(encDriverAsis)
  849. e.cr, _ = e.e.(containerStateRecv)
  850. return e
  851. }
  852. // Reset the Encoder with a new output stream.
  853. //
  854. // This accommodates using the state of the Encoder,
  855. // where it has "cached" information about sub-engines.
  856. func (e *Encoder) Reset(w io.Writer) {
  857. ww, ok := w.(ioEncWriterWriter)
  858. if ok {
  859. e.wi.w = ww
  860. } else {
  861. sww := &e.wi.s
  862. sww.w = w
  863. sww.bw, _ = w.(io.ByteWriter)
  864. sww.sw, _ = w.(ioEncStringWriter)
  865. e.wi.w = sww
  866. //ww = bufio.NewWriterSize(w, defEncByteBufSize)
  867. }
  868. e.w = &e.wi
  869. e.e.reset()
  870. }
  871. func (e *Encoder) ResetBytes(out *[]byte) {
  872. in := *out
  873. if in == nil {
  874. in = make([]byte, defEncByteBufSize)
  875. }
  876. e.wb.b, e.wb.out, e.wb.c = in, out, 0
  877. e.w = &e.wb
  878. e.e.reset()
  879. }
  880. // func (e *Encoder) sendContainerState(c containerState) {
  881. // if e.cr != nil {
  882. // e.cr.sendContainerState(c)
  883. // }
  884. // }
  885. // Encode writes an object into a stream.
  886. //
  887. // Encoding can be configured via the struct tag for the fields.
  888. // The "codec" key in struct field's tag value is the key name,
  889. // followed by an optional comma and options.
  890. // Note that the "json" key is used in the absence of the "codec" key.
  891. //
  892. // To set an option on all fields (e.g. omitempty on all fields), you
  893. // can create a field called _struct, and set flags on it.
  894. //
  895. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  896. // - the field's tag is "-", OR
  897. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  898. //
  899. // When encoding as a map, the first string in the tag (before the comma)
  900. // is the map key string to use when encoding.
  901. //
  902. // However, struct values may encode as arrays. This happens when:
  903. // - StructToArray Encode option is set, OR
  904. // - the tag on the _struct field sets the "toarray" option
  905. //
  906. // Values with types that implement MapBySlice are encoded as stream maps.
  907. //
  908. // The empty values (for omitempty option) are false, 0, any nil pointer
  909. // or interface value, and any array, slice, map, or string of length zero.
  910. //
  911. // Anonymous fields are encoded inline except:
  912. // - the struct tag specifies a replacement name (first value)
  913. // - the field is of an interface type
  914. //
  915. // Examples:
  916. //
  917. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  918. // type MyStruct struct {
  919. // _struct bool `codec:",omitempty"` //set omitempty for every field
  920. // Field1 string `codec:"-"` //skip this field
  921. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  922. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  923. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  924. // io.Reader //use key "Reader".
  925. // MyStruct `codec:"my1" //use key "my1".
  926. // MyStruct //inline it
  927. // ...
  928. // }
  929. //
  930. // type MyStruct struct {
  931. // _struct bool `codec:",omitempty,toarray"` //set omitempty for every field
  932. // //and encode struct as an array
  933. // }
  934. //
  935. // The mode of encoding is based on the type of the value. When a value is seen:
  936. // - If a Selfer, call its CodecEncodeSelf method
  937. // - If an extension is registered for it, call that extension function
  938. // - If it implements encoding.(Binary|Text|JSON)Marshaler, call its Marshal(Binary|Text|JSON) method
  939. // - Else encode it based on its reflect.Kind
  940. //
  941. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  942. // Some formats support symbols (e.g. binc) and will properly encode the string
  943. // only once in the stream, and use a tag to refer to it thereafter.
  944. func (e *Encoder) Encode(v interface{}) (err error) {
  945. defer panicToErr(&err)
  946. e.encode(v)
  947. e.w.atEndOfEncode()
  948. return
  949. }
  950. // MustEncode is like Encode, but panics if unable to Encode.
  951. // This provides insight to the code location that triggered the error.
  952. func (e *Encoder) MustEncode(v interface{}) {
  953. e.encode(v)
  954. e.w.atEndOfEncode()
  955. }
  956. // comment out these (Must)Write methods. They were only put there to support cbor.
  957. // However, users already have access to the streams, and can write directly.
  958. //
  959. // // Write allows users write to the Encoder stream directly.
  960. // func (e *Encoder) Write(bs []byte) (err error) {
  961. // defer panicToErr(&err)
  962. // e.w.writeb(bs)
  963. // return
  964. // }
  965. // // MustWrite is like write, but panics if unable to Write.
  966. // func (e *Encoder) MustWrite(bs []byte) {
  967. // e.w.writeb(bs)
  968. // }
  969. func (e *Encoder) encode(iv interface{}) {
  970. // if ics, ok := iv.(Selfer); ok {
  971. // ics.CodecEncodeSelf(e)
  972. // return
  973. // }
  974. switch v := iv.(type) {
  975. case nil:
  976. e.e.EncodeNil()
  977. case Selfer:
  978. v.CodecEncodeSelf(e)
  979. case reflect.Value:
  980. e.encodeValue(v, nil)
  981. case string:
  982. e.e.EncodeString(c_UTF8, v)
  983. case bool:
  984. e.e.EncodeBool(v)
  985. case int:
  986. e.e.EncodeInt(int64(v))
  987. case int8:
  988. e.e.EncodeInt(int64(v))
  989. case int16:
  990. e.e.EncodeInt(int64(v))
  991. case int32:
  992. e.e.EncodeInt(int64(v))
  993. case int64:
  994. e.e.EncodeInt(v)
  995. case uint:
  996. e.e.EncodeUint(uint64(v))
  997. case uint8:
  998. e.e.EncodeUint(uint64(v))
  999. case uint16:
  1000. e.e.EncodeUint(uint64(v))
  1001. case uint32:
  1002. e.e.EncodeUint(uint64(v))
  1003. case uint64:
  1004. e.e.EncodeUint(v)
  1005. case float32:
  1006. e.e.EncodeFloat32(v)
  1007. case float64:
  1008. e.e.EncodeFloat64(v)
  1009. case []uint8:
  1010. e.e.EncodeStringBytes(c_RAW, v)
  1011. case *string:
  1012. e.e.EncodeString(c_UTF8, *v)
  1013. case *bool:
  1014. e.e.EncodeBool(*v)
  1015. case *int:
  1016. e.e.EncodeInt(int64(*v))
  1017. case *int8:
  1018. e.e.EncodeInt(int64(*v))
  1019. case *int16:
  1020. e.e.EncodeInt(int64(*v))
  1021. case *int32:
  1022. e.e.EncodeInt(int64(*v))
  1023. case *int64:
  1024. e.e.EncodeInt(*v)
  1025. case *uint:
  1026. e.e.EncodeUint(uint64(*v))
  1027. case *uint8:
  1028. e.e.EncodeUint(uint64(*v))
  1029. case *uint16:
  1030. e.e.EncodeUint(uint64(*v))
  1031. case *uint32:
  1032. e.e.EncodeUint(uint64(*v))
  1033. case *uint64:
  1034. e.e.EncodeUint(*v)
  1035. case *float32:
  1036. e.e.EncodeFloat32(*v)
  1037. case *float64:
  1038. e.e.EncodeFloat64(*v)
  1039. case *[]uint8:
  1040. e.e.EncodeStringBytes(c_RAW, *v)
  1041. default:
  1042. const checkCodecSelfer1 = true // in case T is passed, where *T is a Selfer, still checkCodecSelfer
  1043. if !fastpathEncodeTypeSwitch(iv, e) {
  1044. e.encodeI(iv, false, checkCodecSelfer1)
  1045. }
  1046. }
  1047. }
  1048. func (e *Encoder) preEncodeValue(rv reflect.Value) (rv2 reflect.Value, sptr uintptr, proceed bool) {
  1049. // use a goto statement instead of a recursive function for ptr/interface.
  1050. TOP:
  1051. switch rv.Kind() {
  1052. case reflect.Ptr:
  1053. if rv.IsNil() {
  1054. e.e.EncodeNil()
  1055. return
  1056. }
  1057. rv = rv.Elem()
  1058. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1059. // TODO: Movable pointers will be an issue here. Future problem.
  1060. sptr = rv.UnsafeAddr()
  1061. break TOP
  1062. }
  1063. goto TOP
  1064. case reflect.Interface:
  1065. if rv.IsNil() {
  1066. e.e.EncodeNil()
  1067. return
  1068. }
  1069. rv = rv.Elem()
  1070. goto TOP
  1071. case reflect.Slice, reflect.Map:
  1072. if rv.IsNil() {
  1073. e.e.EncodeNil()
  1074. return
  1075. }
  1076. case reflect.Invalid, reflect.Func:
  1077. e.e.EncodeNil()
  1078. return
  1079. }
  1080. proceed = true
  1081. rv2 = rv
  1082. return
  1083. }
  1084. func (e *Encoder) doEncodeValue(rv reflect.Value, fn *encFn, sptr uintptr,
  1085. checkFastpath, checkCodecSelfer bool) {
  1086. if sptr != 0 {
  1087. if (&e.ci).add(sptr) {
  1088. e.errorf("circular reference found: # %d", sptr)
  1089. }
  1090. }
  1091. if fn == nil {
  1092. rt := rv.Type()
  1093. rtid := reflect.ValueOf(rt).Pointer()
  1094. // fn = e.getEncFn(rtid, rt, true, true)
  1095. fn = e.getEncFn(rtid, rt, checkFastpath, checkCodecSelfer)
  1096. }
  1097. fn.f(&fn.i, rv)
  1098. if sptr != 0 {
  1099. (&e.ci).remove(sptr)
  1100. }
  1101. }
  1102. func (e *Encoder) encodeI(iv interface{}, checkFastpath, checkCodecSelfer bool) {
  1103. if rv, sptr, proceed := e.preEncodeValue(reflect.ValueOf(iv)); proceed {
  1104. e.doEncodeValue(rv, nil, sptr, checkFastpath, checkCodecSelfer)
  1105. }
  1106. }
  1107. func (e *Encoder) encodeValue(rv reflect.Value, fn *encFn) {
  1108. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1109. if rv, sptr, proceed := e.preEncodeValue(rv); proceed {
  1110. e.doEncodeValue(rv, fn, sptr, true, true)
  1111. }
  1112. }
  1113. func (e *Encoder) getEncFn(rtid uintptr, rt reflect.Type, checkFastpath, checkCodecSelfer bool) (fn *encFn) {
  1114. // rtid := reflect.ValueOf(rt).Pointer()
  1115. var ok bool
  1116. if useMapForCodecCache {
  1117. fn, ok = e.f[rtid]
  1118. } else {
  1119. for i := range e.s {
  1120. v := &(e.s[i])
  1121. if v.rtid == rtid {
  1122. fn, ok = &(v.fn), true
  1123. break
  1124. }
  1125. }
  1126. }
  1127. if ok {
  1128. return
  1129. }
  1130. if useMapForCodecCache {
  1131. if e.f == nil {
  1132. e.f = make(map[uintptr]*encFn, initCollectionCap)
  1133. }
  1134. fn = new(encFn)
  1135. e.f[rtid] = fn
  1136. } else {
  1137. if e.s == nil {
  1138. e.s = make([]encRtidFn, 0, initCollectionCap)
  1139. }
  1140. e.s = append(e.s, encRtidFn{rtid: rtid})
  1141. fn = &(e.s[len(e.s)-1]).fn
  1142. }
  1143. ti := e.h.getTypeInfo(rtid, rt)
  1144. fi := &(fn.i)
  1145. fi.e = e
  1146. fi.ti = ti
  1147. if checkCodecSelfer && ti.cs {
  1148. fn.f = (*encFnInfo).selferMarshal
  1149. } else if rtid == rawExtTypId {
  1150. fn.f = (*encFnInfo).rawExt
  1151. } else if e.e.IsBuiltinType(rtid) {
  1152. fn.f = (*encFnInfo).builtin
  1153. } else if xfFn := e.h.getExt(rtid); xfFn != nil {
  1154. fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext
  1155. fn.f = (*encFnInfo).ext
  1156. } else if supportMarshalInterfaces && e.be && ti.bm {
  1157. fn.f = (*encFnInfo).binaryMarshal
  1158. } else if supportMarshalInterfaces && !e.be && e.js && ti.jm {
  1159. //If JSON, we should check JSONMarshal before textMarshal
  1160. fn.f = (*encFnInfo).jsonMarshal
  1161. } else if supportMarshalInterfaces && !e.be && ti.tm {
  1162. fn.f = (*encFnInfo).textMarshal
  1163. } else {
  1164. rk := rt.Kind()
  1165. if fastpathEnabled && checkFastpath && (rk == reflect.Map || rk == reflect.Slice) {
  1166. if rt.PkgPath() == "" { // un-named slice or map
  1167. if idx := fastpathAV.index(rtid); idx != -1 {
  1168. fn.f = fastpathAV[idx].encfn
  1169. }
  1170. } else {
  1171. ok = false
  1172. // use mapping for underlying type if there
  1173. var rtu reflect.Type
  1174. if rk == reflect.Map {
  1175. rtu = reflect.MapOf(rt.Key(), rt.Elem())
  1176. } else {
  1177. rtu = reflect.SliceOf(rt.Elem())
  1178. }
  1179. rtuid := reflect.ValueOf(rtu).Pointer()
  1180. if idx := fastpathAV.index(rtuid); idx != -1 {
  1181. xfnf := fastpathAV[idx].encfn
  1182. xrt := fastpathAV[idx].rt
  1183. fn.f = func(xf *encFnInfo, xrv reflect.Value) {
  1184. xfnf(xf, xrv.Convert(xrt))
  1185. }
  1186. }
  1187. }
  1188. }
  1189. if fn.f == nil {
  1190. switch rk {
  1191. case reflect.Bool:
  1192. fn.f = (*encFnInfo).kBool
  1193. case reflect.String:
  1194. fn.f = (*encFnInfo).kString
  1195. case reflect.Float64:
  1196. fn.f = (*encFnInfo).kFloat64
  1197. case reflect.Float32:
  1198. fn.f = (*encFnInfo).kFloat32
  1199. case reflect.Int, reflect.Int8, reflect.Int64, reflect.Int32, reflect.Int16:
  1200. fn.f = (*encFnInfo).kInt
  1201. case reflect.Uint8, reflect.Uint64, reflect.Uint, reflect.Uint32, reflect.Uint16, reflect.Uintptr:
  1202. fn.f = (*encFnInfo).kUint
  1203. case reflect.Invalid:
  1204. fn.f = (*encFnInfo).kInvalid
  1205. case reflect.Chan:
  1206. fi.seq = seqTypeChan
  1207. fn.f = (*encFnInfo).kSlice
  1208. case reflect.Slice:
  1209. fi.seq = seqTypeSlice
  1210. fn.f = (*encFnInfo).kSlice
  1211. case reflect.Array:
  1212. fi.seq = seqTypeArray
  1213. fn.f = (*encFnInfo).kSlice
  1214. case reflect.Struct:
  1215. fn.f = (*encFnInfo).kStruct
  1216. // reflect.Ptr and reflect.Interface are handled already by preEncodeValue
  1217. // case reflect.Ptr:
  1218. // fn.f = (*encFnInfo).kPtr
  1219. // case reflect.Interface:
  1220. // fn.f = (*encFnInfo).kInterface
  1221. case reflect.Map:
  1222. fn.f = (*encFnInfo).kMap
  1223. default:
  1224. fn.f = (*encFnInfo).kErr
  1225. }
  1226. }
  1227. }
  1228. return
  1229. }
  1230. func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1231. if fnerr != nil {
  1232. panic(fnerr)
  1233. }
  1234. if bs == nil {
  1235. e.e.EncodeNil()
  1236. } else if asis {
  1237. e.asis(bs)
  1238. } else {
  1239. e.e.EncodeStringBytes(c, bs)
  1240. }
  1241. }
  1242. func (e *Encoder) asis(v []byte) {
  1243. if e.as == nil {
  1244. e.w.writeb(v)
  1245. } else {
  1246. e.as.EncodeAsis(v)
  1247. }
  1248. }
  1249. func (e *Encoder) errorf(format string, params ...interface{}) {
  1250. err := fmt.Errorf(format, params...)
  1251. panic(err)
  1252. }
  1253. // ----------------------------------------
  1254. const encStructPoolLen = 5
  1255. // encStructPool is an array of sync.Pool.
  1256. // Each element of the array pools one of encStructPool(8|16|32|64).
  1257. // It allows the re-use of slices up to 64 in length.
  1258. // A performance cost of encoding structs was collecting
  1259. // which values were empty and should be omitted.
  1260. // We needed slices of reflect.Value and string to collect them.
  1261. // This shared pool reduces the amount of unnecessary creation we do.
  1262. // The cost is that of locking sometimes, but sync.Pool is efficient
  1263. // enough to reduce thread contention.
  1264. var encStructPool [encStructPoolLen]sync.Pool
  1265. func init() {
  1266. encStructPool[0].New = func() interface{} { return new([8]stringRv) }
  1267. encStructPool[1].New = func() interface{} { return new([16]stringRv) }
  1268. encStructPool[2].New = func() interface{} { return new([32]stringRv) }
  1269. encStructPool[3].New = func() interface{} { return new([64]stringRv) }
  1270. encStructPool[4].New = func() interface{} { return new([128]stringRv) }
  1271. }
  1272. func encStructPoolGet(newlen int) (p *sync.Pool, v interface{}, s []stringRv) {
  1273. // if encStructPoolLen != 5 { // constant chec, so removed at build time.
  1274. // panic(errors.New("encStructPoolLen must be equal to 4")) // defensive, in case it is changed
  1275. // }
  1276. // idxpool := newlen / 8
  1277. if newlen <= 8 {
  1278. p = &encStructPool[0]
  1279. v = p.Get()
  1280. s = v.(*[8]stringRv)[:newlen]
  1281. } else if newlen <= 16 {
  1282. p = &encStructPool[1]
  1283. v = p.Get()
  1284. s = v.(*[16]stringRv)[:newlen]
  1285. } else if newlen <= 32 {
  1286. p = &encStructPool[2]
  1287. v = p.Get()
  1288. s = v.(*[32]stringRv)[:newlen]
  1289. } else if newlen <= 64 {
  1290. p = &encStructPool[3]
  1291. v = p.Get()
  1292. s = v.(*[64]stringRv)[:newlen]
  1293. } else if newlen <= 128 {
  1294. p = &encStructPool[4]
  1295. v = p.Get()
  1296. s = v.(*[128]stringRv)[:newlen]
  1297. } else {
  1298. s = make([]stringRv, newlen)
  1299. }
  1300. return
  1301. }
  1302. // ----------------------------------------
  1303. // func encErr(format string, params ...interface{}) {
  1304. // doPanic(msgTagEnc, format, params...)
  1305. // }