123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377 |
- // Copyright 2017, The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE.md file.
- package cmp
- import (
- "fmt"
- "reflect"
- "strings"
- "unicode"
- "unicode/utf8"
- "github.com/google/go-cmp/cmp/internal/value"
- )
- // Path is a list of PathSteps describing the sequence of operations to get
- // from some root type to the current position in the value tree.
- // The first Path element is always an operation-less PathStep that exists
- // simply to identify the initial type.
- //
- // When traversing structs with embedded structs, the embedded struct will
- // always be accessed as a field before traversing the fields of the
- // embedded struct themselves. That is, an exported field from the
- // embedded struct will never be accessed directly from the parent struct.
- type Path []PathStep
- // PathStep is a union-type for specific operations to traverse
- // a value's tree structure. Users of this package never need to implement
- // these types as values of this type will be returned by this package.
- //
- // Implementations of this interface are
- // StructField, SliceIndex, MapIndex, Indirect, TypeAssertion, and Transform.
- type PathStep interface {
- String() string
- // Type is the resulting type after performing the path step.
- Type() reflect.Type
- // Values is the resulting values after performing the path step.
- // The type of each valid value is guaranteed to be identical to Type.
- //
- // In some cases, one or both may be invalid or have restrictions:
- // • For StructField, both are not interface-able if the current field
- // is unexported and the struct type is not explicitly permitted by
- // an Exporter to traverse unexported fields.
- // • For SliceIndex, one may be invalid if an element is missing from
- // either the x or y slice.
- // • For MapIndex, one may be invalid if an entry is missing from
- // either the x or y map.
- //
- // The provided values must not be mutated.
- Values() (vx, vy reflect.Value)
- }
- var (
- _ PathStep = StructField{}
- _ PathStep = SliceIndex{}
- _ PathStep = MapIndex{}
- _ PathStep = Indirect{}
- _ PathStep = TypeAssertion{}
- _ PathStep = Transform{}
- )
- func (pa *Path) push(s PathStep) {
- *pa = append(*pa, s)
- }
- func (pa *Path) pop() {
- *pa = (*pa)[:len(*pa)-1]
- }
- // Last returns the last PathStep in the Path.
- // If the path is empty, this returns a non-nil PathStep that reports a nil Type.
- func (pa Path) Last() PathStep {
- return pa.Index(-1)
- }
- // Index returns the ith step in the Path and supports negative indexing.
- // A negative index starts counting from the tail of the Path such that -1
- // refers to the last step, -2 refers to the second-to-last step, and so on.
- // If index is invalid, this returns a non-nil PathStep that reports a nil Type.
- func (pa Path) Index(i int) PathStep {
- if i < 0 {
- i = len(pa) + i
- }
- if i < 0 || i >= len(pa) {
- return pathStep{}
- }
- return pa[i]
- }
- // String returns the simplified path to a node.
- // The simplified path only contains struct field accesses.
- //
- // For example:
- // MyMap.MySlices.MyField
- func (pa Path) String() string {
- var ss []string
- for _, s := range pa {
- if _, ok := s.(StructField); ok {
- ss = append(ss, s.String())
- }
- }
- return strings.TrimPrefix(strings.Join(ss, ""), ".")
- }
- // GoString returns the path to a specific node using Go syntax.
- //
- // For example:
- // (*root.MyMap["key"].(*mypkg.MyStruct).MySlices)[2][3].MyField
- func (pa Path) GoString() string {
- var ssPre, ssPost []string
- var numIndirect int
- for i, s := range pa {
- var nextStep PathStep
- if i+1 < len(pa) {
- nextStep = pa[i+1]
- }
- switch s := s.(type) {
- case Indirect:
- numIndirect++
- pPre, pPost := "(", ")"
- switch nextStep.(type) {
- case Indirect:
- continue // Next step is indirection, so let them batch up
- case StructField:
- numIndirect-- // Automatic indirection on struct fields
- case nil:
- pPre, pPost = "", "" // Last step; no need for parenthesis
- }
- if numIndirect > 0 {
- ssPre = append(ssPre, pPre+strings.Repeat("*", numIndirect))
- ssPost = append(ssPost, pPost)
- }
- numIndirect = 0
- continue
- case Transform:
- ssPre = append(ssPre, s.trans.name+"(")
- ssPost = append(ssPost, ")")
- continue
- }
- ssPost = append(ssPost, s.String())
- }
- for i, j := 0, len(ssPre)-1; i < j; i, j = i+1, j-1 {
- ssPre[i], ssPre[j] = ssPre[j], ssPre[i]
- }
- return strings.Join(ssPre, "") + strings.Join(ssPost, "")
- }
- type pathStep struct {
- typ reflect.Type
- vx, vy reflect.Value
- }
- func (ps pathStep) Type() reflect.Type { return ps.typ }
- func (ps pathStep) Values() (vx, vy reflect.Value) { return ps.vx, ps.vy }
- func (ps pathStep) String() string {
- if ps.typ == nil {
- return "<nil>"
- }
- s := ps.typ.String()
- if s == "" || strings.ContainsAny(s, "{}\n") {
- return "root" // Type too simple or complex to print
- }
- return fmt.Sprintf("{%s}", s)
- }
- // StructField represents a struct field access on a field called Name.
- type StructField struct{ *structField }
- type structField struct {
- pathStep
- name string
- idx int
- // These fields are used for forcibly accessing an unexported field.
- // pvx, pvy, and field are only valid if unexported is true.
- unexported bool
- mayForce bool // Forcibly allow visibility
- pvx, pvy reflect.Value // Parent values
- field reflect.StructField // Field information
- }
- func (sf StructField) Type() reflect.Type { return sf.typ }
- func (sf StructField) Values() (vx, vy reflect.Value) {
- if !sf.unexported {
- return sf.vx, sf.vy // CanInterface reports true
- }
- // Forcibly obtain read-write access to an unexported struct field.
- if sf.mayForce {
- vx = retrieveUnexportedField(sf.pvx, sf.field)
- vy = retrieveUnexportedField(sf.pvy, sf.field)
- return vx, vy // CanInterface reports true
- }
- return sf.vx, sf.vy // CanInterface reports false
- }
- func (sf StructField) String() string { return fmt.Sprintf(".%s", sf.name) }
- // Name is the field name.
- func (sf StructField) Name() string { return sf.name }
- // Index is the index of the field in the parent struct type.
- // See reflect.Type.Field.
- func (sf StructField) Index() int { return sf.idx }
- // SliceIndex is an index operation on a slice or array at some index Key.
- type SliceIndex struct{ *sliceIndex }
- type sliceIndex struct {
- pathStep
- xkey, ykey int
- isSlice bool // False for reflect.Array
- }
- func (si SliceIndex) Type() reflect.Type { return si.typ }
- func (si SliceIndex) Values() (vx, vy reflect.Value) { return si.vx, si.vy }
- func (si SliceIndex) String() string {
- switch {
- case si.xkey == si.ykey:
- return fmt.Sprintf("[%d]", si.xkey)
- case si.ykey == -1:
- // [5->?] means "I don't know where X[5] went"
- return fmt.Sprintf("[%d->?]", si.xkey)
- case si.xkey == -1:
- // [?->3] means "I don't know where Y[3] came from"
- return fmt.Sprintf("[?->%d]", si.ykey)
- default:
- // [5->3] means "X[5] moved to Y[3]"
- return fmt.Sprintf("[%d->%d]", si.xkey, si.ykey)
- }
- }
- // Key is the index key; it may return -1 if in a split state
- func (si SliceIndex) Key() int {
- if si.xkey != si.ykey {
- return -1
- }
- return si.xkey
- }
- // SplitKeys are the indexes for indexing into slices in the
- // x and y values, respectively. These indexes may differ due to the
- // insertion or removal of an element in one of the slices, causing
- // all of the indexes to be shifted. If an index is -1, then that
- // indicates that the element does not exist in the associated slice.
- //
- // Key is guaranteed to return -1 if and only if the indexes returned
- // by SplitKeys are not the same. SplitKeys will never return -1 for
- // both indexes.
- func (si SliceIndex) SplitKeys() (ix, iy int) { return si.xkey, si.ykey }
- // MapIndex is an index operation on a map at some index Key.
- type MapIndex struct{ *mapIndex }
- type mapIndex struct {
- pathStep
- key reflect.Value
- }
- func (mi MapIndex) Type() reflect.Type { return mi.typ }
- func (mi MapIndex) Values() (vx, vy reflect.Value) { return mi.vx, mi.vy }
- func (mi MapIndex) String() string { return fmt.Sprintf("[%#v]", mi.key) }
- // Key is the value of the map key.
- func (mi MapIndex) Key() reflect.Value { return mi.key }
- // Indirect represents pointer indirection on the parent type.
- type Indirect struct{ *indirect }
- type indirect struct {
- pathStep
- }
- func (in Indirect) Type() reflect.Type { return in.typ }
- func (in Indirect) Values() (vx, vy reflect.Value) { return in.vx, in.vy }
- func (in Indirect) String() string { return "*" }
- // TypeAssertion represents a type assertion on an interface.
- type TypeAssertion struct{ *typeAssertion }
- type typeAssertion struct {
- pathStep
- }
- func (ta TypeAssertion) Type() reflect.Type { return ta.typ }
- func (ta TypeAssertion) Values() (vx, vy reflect.Value) { return ta.vx, ta.vy }
- func (ta TypeAssertion) String() string { return fmt.Sprintf(".(%v)", ta.typ) }
- // Transform is a transformation from the parent type to the current type.
- type Transform struct{ *transform }
- type transform struct {
- pathStep
- trans *transformer
- }
- func (tf Transform) Type() reflect.Type { return tf.typ }
- func (tf Transform) Values() (vx, vy reflect.Value) { return tf.vx, tf.vy }
- func (tf Transform) String() string { return fmt.Sprintf("%s()", tf.trans.name) }
- // Name is the name of the Transformer.
- func (tf Transform) Name() string { return tf.trans.name }
- // Func is the function pointer to the transformer function.
- func (tf Transform) Func() reflect.Value { return tf.trans.fnc }
- // Option returns the originally constructed Transformer option.
- // The == operator can be used to detect the exact option used.
- func (tf Transform) Option() Option { return tf.trans }
- // pointerPath represents a dual-stack of pointers encountered when
- // recursively traversing the x and y values. This data structure supports
- // detection of cycles and determining whether the cycles are equal.
- // In Go, cycles can occur via pointers, slices, and maps.
- //
- // The pointerPath uses a map to represent a stack; where descension into a
- // pointer pushes the address onto the stack, and ascension from a pointer
- // pops the address from the stack. Thus, when traversing into a pointer from
- // reflect.Ptr, reflect.Slice element, or reflect.Map, we can detect cycles
- // by checking whether the pointer has already been visited. The cycle detection
- // uses a seperate stack for the x and y values.
- //
- // If a cycle is detected we need to determine whether the two pointers
- // should be considered equal. The definition of equality chosen by Equal
- // requires two graphs to have the same structure. To determine this, both the
- // x and y values must have a cycle where the previous pointers were also
- // encountered together as a pair.
- //
- // Semantically, this is equivalent to augmenting Indirect, SliceIndex, and
- // MapIndex with pointer information for the x and y values.
- // Suppose px and py are two pointers to compare, we then search the
- // Path for whether px was ever encountered in the Path history of x, and
- // similarly so with py. If either side has a cycle, the comparison is only
- // equal if both px and py have a cycle resulting from the same PathStep.
- //
- // Using a map as a stack is more performant as we can perform cycle detection
- // in O(1) instead of O(N) where N is len(Path).
- type pointerPath struct {
- // mx is keyed by x pointers, where the value is the associated y pointer.
- mx map[value.Pointer]value.Pointer
- // my is keyed by y pointers, where the value is the associated x pointer.
- my map[value.Pointer]value.Pointer
- }
- func (p *pointerPath) Init() {
- p.mx = make(map[value.Pointer]value.Pointer)
- p.my = make(map[value.Pointer]value.Pointer)
- }
- // Push indicates intent to descend into pointers vx and vy where
- // visited reports whether either has been seen before. If visited before,
- // equal reports whether both pointers were encountered together.
- // Pop must be called if and only if the pointers were never visited.
- //
- // The pointers vx and vy must be a reflect.Ptr, reflect.Slice, or reflect.Map
- // and be non-nil.
- func (p pointerPath) Push(vx, vy reflect.Value) (equal, visited bool) {
- px := value.PointerOf(vx)
- py := value.PointerOf(vy)
- _, ok1 := p.mx[px]
- _, ok2 := p.my[py]
- if ok1 || ok2 {
- equal = p.mx[px] == py && p.my[py] == px // Pointers paired together
- return equal, true
- }
- p.mx[px] = py
- p.my[py] = px
- return false, false
- }
- // Pop ascends from pointers vx and vy.
- func (p pointerPath) Pop(vx, vy reflect.Value) {
- delete(p.mx, value.PointerOf(vx))
- delete(p.my, value.PointerOf(vy))
- }
- // isExported reports whether the identifier is exported.
- func isExported(id string) bool {
- r, _ := utf8.DecodeRuneInString(id)
- return unicode.IsUpper(r)
- }
|