Mike Danese 826f89d11d glide: add k8s deps há 8 anos atrás
..
clustering 826f89d11d glide: add k8s deps há 8 anos atrás
README.md 826f89d11d glide: add k8s deps há 8 anos atrás
access.md 826f89d11d glide: add k8s deps há 8 anos atrás
admission_control.md 826f89d11d glide: add k8s deps há 8 anos atrás
admission_control_limit_range.md 826f89d11d glide: add k8s deps há 8 anos atrás
admission_control_resource_quota.md 826f89d11d glide: add k8s deps há 8 anos atrás
architecture.dia 826f89d11d glide: add k8s deps há 8 anos atrás
architecture.md 826f89d11d glide: add k8s deps há 8 anos atrás
architecture.png 826f89d11d glide: add k8s deps há 8 anos atrás
architecture.svg 826f89d11d glide: add k8s deps há 8 anos atrás
aws_under_the_hood.md 826f89d11d glide: add k8s deps há 8 anos atrás
clustering.md 826f89d11d glide: add k8s deps há 8 anos atrás
command_execution_port_forwarding.md 826f89d11d glide: add k8s deps há 8 anos atrás
configmap.md 826f89d11d glide: add k8s deps há 8 anos atrás
control-plane-resilience.md 826f89d11d glide: add k8s deps há 8 anos atrás
daemon.md 826f89d11d glide: add k8s deps há 8 anos atrás
downward_api_resources_limits_requests.md 826f89d11d glide: add k8s deps há 8 anos atrás
enhance-pluggable-policy.md 826f89d11d glide: add k8s deps há 8 anos atrás
event_compression.md 826f89d11d glide: add k8s deps há 8 anos atrás
expansion.md 826f89d11d glide: add k8s deps há 8 anos atrás
extending-api.md 826f89d11d glide: add k8s deps há 8 anos atrás
federated-services.md 826f89d11d glide: add k8s deps há 8 anos atrás
federation-phase-1.md 826f89d11d glide: add k8s deps há 8 anos atrás
horizontal-pod-autoscaler.md 826f89d11d glide: add k8s deps há 8 anos atrás
identifiers.md 826f89d11d glide: add k8s deps há 8 anos atrás
indexed-job.md 826f89d11d glide: add k8s deps há 8 anos atrás
metadata-policy.md 826f89d11d glide: add k8s deps há 8 anos atrás
namespaces.md 826f89d11d glide: add k8s deps há 8 anos atrás
networking.md 826f89d11d glide: add k8s deps há 8 anos atrás
nodeaffinity.md 826f89d11d glide: add k8s deps há 8 anos atrás
persistent-storage.md 826f89d11d glide: add k8s deps há 8 anos atrás
podaffinity.md 826f89d11d glide: add k8s deps há 8 anos atrás
principles.md 826f89d11d glide: add k8s deps há 8 anos atrás
resource-qos.md 826f89d11d glide: add k8s deps há 8 anos atrás
resources.md 826f89d11d glide: add k8s deps há 8 anos atrás
scheduler_extender.md 826f89d11d glide: add k8s deps há 8 anos atrás
seccomp.md 826f89d11d glide: add k8s deps há 8 anos atrás
secrets.md 826f89d11d glide: add k8s deps há 8 anos atrás
security.md 826f89d11d glide: add k8s deps há 8 anos atrás
security_context.md 826f89d11d glide: add k8s deps há 8 anos atrás
selector-generation.md 826f89d11d glide: add k8s deps há 8 anos atrás
service_accounts.md 826f89d11d glide: add k8s deps há 8 anos atrás
simple-rolling-update.md 826f89d11d glide: add k8s deps há 8 anos atrás
taint-toleration-dedicated.md 826f89d11d glide: add k8s deps há 8 anos atrás
ubernetes-cluster-state.png 826f89d11d glide: add k8s deps há 8 anos atrás
ubernetes-design.png 826f89d11d glide: add k8s deps há 8 anos atrás
ubernetes-scheduling.png 826f89d11d glide: add k8s deps há 8 anos atrás
versioning.md 826f89d11d glide: add k8s deps há 8 anos atrás

README.md

Kubernetes Design Overview

Kubernetes is a system for managing containerized applications across multiple hosts, providing basic mechanisms for deployment, maintenance, and scaling of applications.

Kubernetes establishes robust declarative primitives for maintaining the desired state requested by the user. We see these primitives as the main value added by Kubernetes. Self-healing mechanisms, such as auto-restarting, re-scheduling, and replicating containers require active controllers, not just imperative orchestration.

Kubernetes is primarily targeted at applications composed of multiple containers, such as elastic, distributed micro-services. It is also designed to facilitate migration of non-containerized application stacks to Kubernetes. It therefore includes abstractions for grouping containers in both loosely coupled and tightly coupled formations, and provides ways for containers to find and communicate with each other in relatively familiar ways.

Kubernetes enables users to ask a cluster to run a set of containers. The system automatically chooses hosts to run those containers on. While Kubernetes's scheduler is currently very simple, we expect it to grow in sophistication over time. Scheduling is a policy-rich, topology-aware, workload-specific function that significantly impacts availability, performance, and capacity. The scheduler needs to take into account individual and collective resource requirements, quality of service requirements, hardware/software/policy constraints, affinity and anti-affinity specifications, data locality, inter-workload interference, deadlines, and so on. Workload-specific requirements will be exposed through the API as necessary.

Kubernetes is intended to run on a number of cloud providers, as well as on physical hosts.

A single Kubernetes cluster is not intended to span multiple availability zones. Instead, we recommend building a higher-level layer to replicate complete deployments of highly available applications across multiple zones (see the multi-cluster doc and cluster federation proposal for more details).

Finally, Kubernetes aspires to be an extensible, pluggable, building-block OSS platform and toolkit. Therefore, architecturally, we want Kubernetes to be built as a collection of pluggable components and layers, with the ability to use alternative schedulers, controllers, storage systems, and distribution mechanisms, and we're evolving its current code in that direction. Furthermore, we want others to be able to extend Kubernetes functionality, such as with higher-level PaaS functionality or multi-cluster layers, without modification of core Kubernetes source. Therefore, its API isn't just (or even necessarily mainly) targeted at end users, but at tool and extension developers. Its APIs are intended to serve as the foundation for an open ecosystem of tools, automation systems, and higher-level API layers. Consequently, there are no "internal" inter-component APIs. All APIs are visible and available, including the APIs used by the scheduler, the node controller, the replication-controller manager, Kubelet's API, etc. There's no glass to break -- in order to handle more complex use cases, one can just access the lower-level APIs in a fully transparent, composable manner.

For more about the Kubernetes architecture, see architecture.

[Analytics]()