package router import ( "strings" "unicode" "unicode/utf8" ) func min(a, b int) int { if a <= b { return a } return b } func longestCommonPrefix(a, b string) int { i := 0 max := min(len(a), len(b)) for i < max && a[i] == b[i] { i++ } return i } // Search for a wildcard segment and check the name for invalid characters. // Returns -1 as index, if no wildcard was found. func findWildcard(path string) (wilcard string, i int, valid bool) { // Find start for start, c := range []byte(path) { // A wildcard starts with ':' (param) or '*' (catch-all) if c != ':' && c != '*' { continue } // Find end and check for invalid characters valid = true for end, c := range []byte(path[start+1:]) { switch c { case '/': return path[start : start+1+end], start, valid case ':', '*': valid = false } } return path[start:], start, valid } return "", -1, false } func countParams(path string) uint16 { var n uint for i := range []byte(path) { switch path[i] { case ':', '*': n++ } } return uint16(n) } type nodeType uint8 const ( static nodeType = iota // default root param catchAll ) type node struct { path string indices string wildChild bool nType nodeType priority uint32 children []*node handle Handle } // Increments priority of the given child and reorders if necessary func (n *node) incrementChildPrio(pos int) int { cs := n.children cs[pos].priority++ prio := cs[pos].priority // Adjust position (move to front) newPos := pos for ; newPos > 0 && cs[newPos-1].priority < prio; newPos-- { // Swap node positions cs[newPos-1], cs[newPos] = cs[newPos], cs[newPos-1] } // Build new index char string if newPos != pos { n.indices = n.indices[:newPos] + // Unchanged prefix, might be empty n.indices[pos:pos+1] + // The index char we move n.indices[newPos:pos] + n.indices[pos+1:] // Rest without char at 'pos' } return newPos } // addRoute adds a node with the given handle to the path. // Not concurrency-safe! func (n *node) addRoute(path string, handle Handle, replace bool) { fullPath := path n.priority++ // Empty tree if n.path == "" && n.indices == "" { n.insertChild(path, fullPath, handle) n.nType = root return } walk: for { // Find the longest common prefix. // This also implies that the common prefix contains no ':' or '*' // since the existing key can't contain those chars. i := longestCommonPrefix(path, n.path) // Split edge if i < len(n.path) { child := node{ path: n.path[i:], wildChild: n.wildChild, nType: static, indices: n.indices, children: n.children, handle: n.handle, priority: n.priority - 1, } n.children = []*node{&child} // []byte for proper unicode char conversion, see #65 n.indices = string([]byte{n.path[i]}) n.path = path[:i] n.handle = nil n.wildChild = false } // Make new node a child of this node if i < len(path) { path = path[i:] if n.wildChild { n = n.children[0] n.priority++ // Check if the wildcard matches if len(path) >= len(n.path) && n.path == path[:len(n.path)] && // Adding a child to a catchAll is not possible n.nType != catchAll && // Check for longer wildcard, e.g. :name and :names (len(n.path) >= len(path) || path[len(n.path)] == '/') { continue walk } else { // Wildcard conflict pathSeg := path if n.nType != catchAll { pathSeg = strings.SplitN(pathSeg, "/", 2)[0] } prefix := fullPath[:strings.Index(fullPath, pathSeg)] + n.path panic("'" + pathSeg + "' in new path '" + fullPath + "' conflicts with existing wildcard '" + n.path + "' in existing prefix '" + prefix + "'") } } idxc := path[0] // '/' after param if n.nType == param && idxc == '/' && len(n.children) == 1 { n = n.children[0] n.priority++ continue walk } // Check if a child with the next path byte exists for i, c := range []byte(n.indices) { if c == idxc { i = n.incrementChildPrio(i) n = n.children[i] continue walk } } // Otherwise insert it if idxc != ':' && idxc != '*' { // []byte for proper unicode char conversion, see #65 n.indices += string([]byte{idxc}) child := &node{} n.children = append(n.children, child) n.incrementChildPrio(len(n.indices) - 1) n = child } n.insertChild(path, fullPath, handle) return } // Otherwise add handle to current node if !replace { if n.handle != nil { panic("a handle is already registered for path '" + fullPath + "'") } } n.handle = handle return } } func (n *node) insertChild(path, fullPath string, handle Handle) { for { // Find prefix until first wildcard wildcard, i, valid := findWildcard(path) if i < 0 { // No wilcard found break } // The wildcard name must not contain ':' and '*' if !valid { panic("only one wildcard per path segment is allowed, has: '" + wildcard + "' in path '" + fullPath + "'") } // Check if the wildcard has a name if len(wildcard) < 2 { panic("wildcards must be named with a non-empty name in path '" + fullPath + "'") } // Check if this node has existing children which would be // unreachable if we insert the wildcard here if len(n.children) > 0 { panic("wildcard segment '" + wildcard + "' conflicts with existing children in path '" + fullPath + "'") } // param if wildcard[0] == ':' { if i > 0 { // Insert prefix before the current wildcard n.path = path[:i] path = path[i:] } n.wildChild = true child := &node{ nType: param, path: wildcard, } n.children = []*node{child} n = child n.priority++ // If the path doesn't end with the wildcard, then there // will be another non-wildcard subpath starting with '/' if len(wildcard) < len(path) { path = path[len(wildcard):] child := &node{ priority: 1, } n.children = []*node{child} n = child continue } // Otherwise we're done. Insert the handle in the new leaf n.handle = handle return } // catchAll if i+len(wildcard) != len(path) { panic("catch-all routes are only allowed at the end of the path in path '" + fullPath + "'") } if len(n.path) > 0 && n.path[len(n.path)-1] == '/' { panic("catch-all conflicts with existing handle for the path segment root in path '" + fullPath + "'") } // Currently fixed width 1 for '/' i-- if path[i] != '/' { panic("no / before catch-all in path '" + fullPath + "'") } n.path = path[:i] // First node: catchAll node with empty path child := &node{ wildChild: true, nType: catchAll, } n.children = []*node{child} n.indices = string('/') n = child n.priority++ // Second node: node holding the variable child = &node{ path: path[i:], nType: catchAll, handle: handle, priority: 1, } n.children = []*node{child} return } // If no wildcard was found, simply insert the path and handle n.path = path n.handle = handle } // Returns the handle registered with the given path (key). The values of // wildcards are saved to a map. // If no handle can be found, a TSR (trailing slash redirect) recommendation is // made if a handle exists with an extra (without the) trailing slash for the // given path. func (n *node) getValue(path string, params func() *Params) (handle Handle, ps *Params, tsr bool) { walk: // Outer loop for walking the tree for { prefix := n.path if len(path) > len(prefix) { if path[:len(prefix)] == prefix { path = path[len(prefix):] // If this node does not have a wildcard (param or catchAll) // child, we can just look up the next child node and continue // to walk down the tree if !n.wildChild { idxc := path[0] for i, c := range []byte(n.indices) { if c == idxc { n = n.children[i] continue walk } } // Nothing found. // We can recommend to redirect to the same URL without a // trailing slash if a leaf exists for that path. tsr = (path == "/" && n.handle != nil) return } // Handle wildcard child n = n.children[0] switch n.nType { case param: // Find param end (either '/' or path end) end := 0 for end < len(path) && path[end] != '/' { end++ } // Save param value if params != nil { if ps == nil { ps = params() } // Expand slice within preallocated capacity i := len(*ps) *ps = (*ps)[:i+1] (*ps)[i] = Param{ Key: n.path[1:], Value: path[:end], } } // We need to go deeper! if end < len(path) { if len(n.children) > 0 { path = path[end:] n = n.children[0] continue walk } // ... but we can't tsr = (len(path) == end+1) return } if handle = n.handle; handle != nil { return } else if len(n.children) == 1 { // No handle found. Check if a handle for this path + a // trailing slash exists for TSR recommendation n = n.children[0] tsr = (n.path == "/" && n.handle != nil) || (n.path == "" && n.indices == "/") } return case catchAll: // Save param value if params != nil { if ps == nil { ps = params() } // Expand slice within preallocated capacity i := len(*ps) *ps = (*ps)[:i+1] (*ps)[i] = Param{ Key: n.path[2:], Value: path, } } handle = n.handle return default: panic("invalid node type") } } } else if path == prefix { // We should have reached the node containing the handle. // Check if this node has a handle registered. if handle = n.handle; handle != nil { return } // If there is no handle for this route, but this route has a // wildcard child, there must be a handle for this path with an // additional trailing slash if path == "/" && n.wildChild && n.nType != root { tsr = true return } if path == "/" && n.nType == static { tsr = true return } // No handle found. Check if a handle for this path + a // trailing slash exists for trailing slash recommendation for i, c := range []byte(n.indices) { if c == '/' { n = n.children[i] tsr = (len(n.path) == 1 && n.handle != nil) || (n.nType == catchAll && n.children[0].handle != nil) return } } return } // Nothing found. We can recommend to redirect to the same URL with an // extra trailing slash if a leaf exists for that path tsr = (path == "/") || (len(prefix) == len(path)+1 && prefix[len(path)] == '/' && path == prefix[:len(prefix)-1] && n.handle != nil) return } } // Makes a case-insensitive lookup of the given path and tries to find a handler. // It can optionally also fix trailing slashes. // It returns the case-corrected path and a bool indicating whether the lookup // was successful. func (n *node) findCaseInsensitivePath(path string, fixTrailingSlash bool) (fixedPath string, found bool) { const stackBufSize = 128 // Use a static sized buffer on the stack in the common case. // If the path is too long, allocate a buffer on the heap instead. buf := make([]byte, 0, stackBufSize) if l := len(path) + 1; l > stackBufSize { buf = make([]byte, 0, l) } ciPath := n.findCaseInsensitivePathRec( path, buf, // Preallocate enough memory for new path [4]byte{}, // Empty rune buffer fixTrailingSlash, ) return string(ciPath), ciPath != nil } // Shift bytes in array by n bytes left func shiftNRuneBytes(rb [4]byte, n int) [4]byte { switch n { case 0: return rb case 1: return [4]byte{rb[1], rb[2], rb[3], 0} case 2: return [4]byte{rb[2], rb[3]} case 3: return [4]byte{rb[3]} default: return [4]byte{} } } // Recursive case-insensitive lookup function used by n.findCaseInsensitivePath func (n *node) findCaseInsensitivePathRec(path string, ciPath []byte, rb [4]byte, fixTrailingSlash bool) []byte { npLen := len(n.path) walk: // Outer loop for walking the tree for len(path) >= npLen && (npLen == 0 || strings.EqualFold(path[1:npLen], n.path[1:])) { // Add common prefix to result oldPath := path path = path[npLen:] ciPath = append(ciPath, n.path...) if len(path) > 0 { // If this node does not have a wildcard (param or catchAll) child, // we can just look up the next child node and continue to walk down // the tree if !n.wildChild { // Skip rune bytes already processed rb = shiftNRuneBytes(rb, npLen) if rb[0] != 0 { // Old rune not finished idxc := rb[0] for i, c := range []byte(n.indices) { if c == idxc { // continue with child node n = n.children[i] npLen = len(n.path) continue walk } } } else { // Process a new rune var rv rune // Find rune start. // Runes are up to 4 byte long, // -4 would definitely be another rune. var off int for max := min(npLen, 3); off < max; off++ { if i := npLen - off; utf8.RuneStart(oldPath[i]) { // read rune from cached path rv, _ = utf8.DecodeRuneInString(oldPath[i:]) break } } // Calculate lowercase bytes of current rune lo := unicode.ToLower(rv) utf8.EncodeRune(rb[:], lo) // Skip already processed bytes rb = shiftNRuneBytes(rb, off) idxc := rb[0] for i, c := range []byte(n.indices) { // Lowercase matches if c == idxc { // must use a recursive approach since both the // uppercase byte and the lowercase byte might exist // as an index if out := n.children[i].findCaseInsensitivePathRec( path, ciPath, rb, fixTrailingSlash, ); out != nil { return out } break } } // If we found no match, the same for the uppercase rune, // if it differs if up := unicode.ToUpper(rv); up != lo { utf8.EncodeRune(rb[:], up) rb = shiftNRuneBytes(rb, off) idxc := rb[0] for i, c := range []byte(n.indices) { // Uppercase matches if c == idxc { // Continue with child node n = n.children[i] npLen = len(n.path) continue walk } } } } // Nothing found. We can recommend to redirect to the same URL // without a trailing slash if a leaf exists for that path if fixTrailingSlash && path == "/" && n.handle != nil { return ciPath } return nil } n = n.children[0] switch n.nType { case param: // Find param end (either '/' or path end) end := 0 for end < len(path) && path[end] != '/' { end++ } // Add param value to case insensitive path ciPath = append(ciPath, path[:end]...) // We need to go deeper! if end < len(path) { if len(n.children) > 0 { // Continue with child node n = n.children[0] npLen = len(n.path) path = path[end:] continue } // ... but we can't if fixTrailingSlash && len(path) == end+1 { return ciPath } return nil } if n.handle != nil { return ciPath } else if fixTrailingSlash && len(n.children) == 1 { // No handle found. Check if a handle for this path + a // trailing slash exists n = n.children[0] if n.path == "/" && n.handle != nil { return append(ciPath, '/') } } return nil case catchAll: return append(ciPath, path...) default: panic("invalid node type") } } else { // We should have reached the node containing the handle. // Check if this node has a handle registered. if n.handle != nil { return ciPath } // No handle found. // Try to fix the path by adding a trailing slash if fixTrailingSlash { for i, c := range []byte(n.indices) { if c == '/' { n = n.children[i] if (len(n.path) == 1 && n.handle != nil) || (n.nType == catchAll && n.children[0].handle != nil) { return append(ciPath, '/') } return nil } } } return nil } } // Nothing found. // Try to fix the path by adding / removing a trailing slash if fixTrailingSlash { if path == "/" { return ciPath } if len(path)+1 == npLen && n.path[len(path)] == '/' && strings.EqualFold(path[1:], n.path[1:len(path)]) && n.handle != nil { return append(ciPath, n.path...) } } return nil }